• Spine · Jul 2002

    Neurophysiologic monitoring of spinal nerve root function during instrumented posterior lumbar spine surgery.

    • Bikash Bose, Lawrence R Wierzbowski, and Anthony K Sestokas.
    • Department of Neurosurgery, Christiana Care Health System, Newark, Delaware, USA.
    • Spine. 2002 Jul 1;27(13):1444-50.

    Study DesignRetrospective review of 61 consecutive patients.ObjectivesTo determine the effectiveness of combining intraoperative monitoring of both spontaneous electromyographic activity and compound muscle action potential response to stimulation for detecting a perforation of the pedicle cortex irritation of nerve root during lumbar spine fusion surgery.Summary Of Background DataThe complication rate from instrumentation used with lumbar spine fusion varies from 1 to 33%. To prevent neurologic complications, several monitoring techniques have been used to alert surgeons to possible neurologic damage being introduced during nerve decompression or placement of instrumentation with spine procedures. Because of different sensitivities, one monitoring technique may not be as effective for preventing complications as a combination of techniques.MethodsSixty-one consecutive patients who underwent instrumented posterior lumbar fusions received continuous electromyographic monitoring and stimulus-evoked electromyographic monitoring. A significant neurophysiologic event was signaled by sustained neurotonic electromyographic activity, prompting an alert and a pause in the surgical manipulations that precipitated the activity. After insertion of the transpedicular screws, the integrity of the pedicle cortex was tested by stimulating each screw head and recording compound muscle action potentials. In the presence of a pedicle breach, stimulus intensities below 7 mA were sufficient to evoke compound muscle action potentials from the muscle group innervated by the adjacent spinal nerve root, prompting a surgical alert and subsequent repositioning of the screw.ResultsFourteen significant neurophysiologic events occurred in 13 of 61 patients (21%). Sustained neurotonic electromyographic discharges occurred in 5 of 40 patients during placement of interbody fusion cages, in 2 patients during placement of transpedicular screws, and in 1 patient during tightening of rods. On pedicle screw stimulation, breaches of the pedicle cortex were detected in 6 patients. After surgery, no new neurologic deficits were found in 60 of the 61 patients. One patient who experienced temporary paraparesis had sustained neurotonic electromyographic discharges during retraction of the thecal sac and distraction of the disc space before placement of the cage.ConclusionThese results suggest that intraoperative electromyographic monitoring provides a real-time measure of impending spinal nerve root injury during instrumented posterior lumbar fusion, allowing for timely intervention and minimization of negative postoperative sequela.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.