-
Alcohol. Clin. Exp. Res. · Feb 2014
Activation of the epithelial-to-mesenchymal transition factor snail mediates acetaldehyde-induced intestinal epithelial barrier disruption.
- Elhaseen Elamin, Ad Masclee, Freddy Troost, Jan Dekker, and Daisy Jonkers.
- Top Institute Food and Nutrition (TIFN) , Wageningen, the Netherlands; Division of Gastroenterology and Hepatology , Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Nutrition, Toxicology and Metabolism , Maastricht University Medical Center, Maastricht, the Netherlands.
- Alcohol. Clin. Exp. Res. 2014 Feb 1;38(2):344-53.
BackgroundAcetaldehyde (AcH) is mutagenic and can reach high concentrations in colonic lumen after ethanol consumption and is associated with intestinal barrier dysfunction and an increased risk of progressive cancers, including colorectal carcinoma. Snail, the transcription factor of epithelial-mesenchymal transition, is known to down-regulate expression of tight junction (TJ) and adherens junction (AJ) proteins, resulting in loss of epithelial integrity, cancer progression, and metastases. As AcH is mutagenic, the role of Snail in the AcH-induced disruption of intestinal epithelial TJs deserves further investigation. Our aim was to investigate the role of oxidative stress and Snail activation in AcH-induced barrier disruption in Caco-2 monolayers.MethodsThe monolayers were exposed from the apical side to AcH ± L-cysteine. Reactive oxygen species (ROS) generation and Snail activation were assessed by ELISA and immunofluorescence. Paracellular permeability, localization, and expression of ZO-1, occludin, E-cadherin, and β-catenin were examined using transepithelial electrical resistance (TEER), fluorescein isothiocyanate-labeled dextran 4 kDa (FITC-D4), immunofluorescence, and ELISA, respectively. Involvement of Snail was further addressed by inhibiting Snail using small interfering RNA (siRNA).ResultsExposure to 25 μM AcH increased ROS generation and ROS-dependently induced Snail phosphorylation. In addition, AcH increased paracellular permeability (decrease in TEER and increase in FITC-D4 permeation) in association with redistribution and decrease of TJ and AJ protein levels, which could be attenuated by L-cysteine. Knockdown of Snail by siRNA attenuated the AcH-induced redistribution and decrease in the TJ and AJ proteins, in association with improvement of the barrier function.ConclusionsOur data demonstrate that oxidative stress-mediated Snail phosphorylation is likely a novel mechanism contributing to the deleterious effects of AcH on the TJ and AJ, and intestinal barrier function.Copyright © 2013 by the Research Society on Alcoholism.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.