-
Anesthesia and analgesia · Oct 2014
Randomized Controlled Trial Comparative StudyThe Humidity in a Dräger Primus Anesthesia Workstation Using Low or High Fresh Gas Flow and With or Without a Heat and Moisture Exchanger in Pediatric Patients.
- Gustavo P Bicalho, Leandro G Braz, Larissa S B de Jesus, Cesar M C Pedigone, Lídia R de Carvalho, Norma S P Módolo, and José R C Braz.
- From the *Department of Anesthesiology, Botucatu Medical School, and †Department of Biostatistics, Institute of Biosciences, UNESP-Universidade Estadual Paulista, São Paulo State, Brazil.
- Anesth. Analg.. 2014 Oct 1;119(4):926-31.
BackgroundAn inhaled gas absolute humidity of 20 mg H2O·L is the value most considered as the threshold necessary for preventing the deleterious effects of dry gas on the epithelium of the airways during anesthesia. Because children have small minute ventilation, we hypothesized that the humidification of a circle breathing system is lower in children compared with adults. The Primus anesthesia workstation (Dräger Medical, Lübeck, Germany) has a built-in hotplate to heat the patient's exhaled gases. A heat and moisture exchanger (HME) is a device that can be used to further humidify and heat the inhaled gases during anesthesia. To evaluate the humidifying properties of this circle breathing system during pediatric anesthesia, we compared the temperature and humidity of inhaled gases under low or high fresh gas flow (FGF) conditions and with or without an HME.MethodsForty children were randomly allocated into 4 groups according to the ventilation of their lungs by a circle breathing system in a Dräger Primus anesthesia workstation with low (1 L·min) or high (3 L·min) FGF without an HME (1L and 3L groups) or with an HME (Pall BB25FS, Pall Biomedical, East Hills, NY; HME1L and HME3L groups). The temperature and absolute humidity of inhaled gases were measured at 10, 20, 40, 60, and 80 minutes after connecting the patient to the breathing circuit.ResultsThe mean inhaled gas temperature was higher in HME groups (HME1L: 30.3°C ± 1.1°C; HME3L: 29.3°C ± 1.2°C) compared with no-HME groups (1L: 27.0°C ± 1.2°C; 3L: 27.1°C ± 1.5°C; P < 0.0001). The mean inhaled gas absolute humidity was higher in HME than no-HME groups and higher in low-flow than high-flow groups ([HME1L: 25 ± 1 mg H2O·L] > [HME3L: 23 ± 2 mg H2O·L] > [1L: 17 ± 1 mg H2O·L] > [3L: 14 ± 1 mg H2O·L]; P < 0.0001).ConclusionsIn a pediatric circle breathing system, the use of neither high nor low FGF provides the minimum humidity level of the inhaled gases thought to reduce the risk of dehydration of airways. Insertion of an HME increases the humidity and temperature of the inhaled gases, bringing them closer to physiological values. The use of a low FGF enhances the HME efficiency and consequently increases the inhaled gas humidity values. Therefore, the association of an HME with low FGF in the breathing circuit is the most efficient way to conserve the heat and the moisture of the inhaled gas during pediatric anesthesia.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.