• Pediatric neurology · Dec 2009

    Diffusion-weighted imaging predicts cognition in pediatric brain injury.

    • Talin Babikian, Karen A Tong, Nicholas R Galloway, Mary-Catherin Freier-Randall, André Obenaus, and Stephen Ashwal.
    • Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Room C8-746, Los Angeles, CA 90024, USA. tbabikian@mednet.ucla.edu
    • Pediatr. Neurol. 2009 Dec 1;41(6):406-12.

    AbstractApparent diffusion coefficient maps from diffusion-weighted imaging predict gross neurologic outcome in adults with traumatic brain injury. Few studies in children have been reported, and none have used apparent diffusion coefficient maps to predict long-term (>1 year) neurocognitive outcomes. In this study, pooled regional and total brain diffusion coefficients were used to predict long-term outcomes in 17 pediatric brain injury patients. Apparent diffusion coefficient values were grouped into peripheral and deep gray and white matter, posterior fossa, and total brain. Regions of interest excluded areas that appeared abnormal on T(2)-weighted images. Apparent diffusion coefficient values from peripheral regions were inversely correlated with cognitive functioning. No significant correlations were apparent between the cognitive scores and apparent diffusion coefficient values for deep tissue or the posterior fossa. Regression analyses suggested that combined peripheral gray and white matter apparent diffusion coefficients explained 42% of the variance in the combined neurocognitive index. Peripheral gray diffusion coefficients alone explained an additional 20% of variance after accounting for clinical variables. These results suggest that obtaining apparent diffusion coefficient values, specifically from peripheral brain regions, may predict long-term outcome after pediatric brain injury. Discrepancies in the literature on this topic, as well as possible explanations, including sampling and clinical considerations, are discussed.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.