• Am. J. Cardiol. · May 2007

    In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation.

    • Stephen H Little, Stephen R Igo, Bahar Pirat, Marti McCulloch, Craig J Hartley, Yukihiko Nosé, and William A Zoghbi.
    • Methodist DeBakey Heart Center, Houston, Texas, USA.
    • Am. J. Cardiol. 2007 May 15;99(10):1440-7.

    AbstractThe 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional-PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flow-meter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional-PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r(2) = 0.47, p <0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 +/- 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r(2) = 0.92, p <0.001), with a mean regurgitant volume underestimate of 2.7 +/- 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…