• Clin Neurophysiol · Sep 2014

    Neurophysiologic markers in laryngeal muscles indicate functional anatomy of laryngeal primary motor cortex and premotor cortex in the caudal opercular part of inferior frontal gyrus.

    • Vedran Deletis, Maja Rogić, Isabel Fernández-Conejero, Andreu Gabarrós, and Ana Jerončić.
    • Laboratory for Human and Experimental Neurophysiology (LAHEN), School of Medicine, University of Split, Split, Croatia; Department for Intraoperative Neurophysiology, Roosevelt Hospital, New York, NY, USA. Electronic address: vdeletis@chpnet.org.
    • Clin Neurophysiol. 2014 Sep 1;125(9):1912-22.

    ObjectiveThe aim of this study was to identify neurophysiologic markers generated by primary motor and premotor cortex for laryngeal muscles, recorded from laryngeal muscle.MethodsTen right-handed healthy subjects underwent navigated transcranial magnetic stimulation (nTMS) and 18 patients underwent direct cortical stimulation (DCS) over the left hemisphere, while recording neurophysiologic markers, short latency response (SLR) and long latency response (LLR) from cricothyroid muscle. Both healthy subjects and patients were engaged in the visual object-naming task. In healthy subjects, the stimulation was time-locked at 10-300 ms after picture presentation while in the patients it was at zero time.ResultsThe latency of SLR in healthy subjects was 12.66 ± 1.09 ms and in patients 12.67 ± 1.23 ms. The latency of LLR in healthy subjects was 58.5 ± 5.9 ms, while in patients 54.25 ± 3.69 ms. SLR elicited by the stimulation of M1 for laryngeal muscles corresponded to induced dysarthria, while LLR elicited by stimulation of the premotor cortex in the caudal opercular part of inferior frontal gyrus, recorded from laryngeal muscle, corresponded to speech arrest in patients and speech arrest and/or language disturbances in healthy subjects.ConclusionIn both groups, SLR indicated location of M1 for laryngeal muscles, and LLR location of premotor cortex in the caudal opercular part of inferior frontal gyrus, recorded from laryngeal muscle, while stimulation of these areas in the dominant hemisphere induced transient speech disruptions.SignificanceDescribed methodology can be used in preoperative mapping, and it is expected to facilitate surgical planning and intraoperative mapping, preserving these areas from injuries.Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…