-
- Andrej Kral, William G Kronenberger, David B Pisoni, and Gerard M O'Donoghue.
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Medical University Hannover, Hannover, Germany; School of Behavioural and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA. Electronic address: kral.andrej@mh-hannover.de.
- Lancet Neurol. 2016 May 1; 15 (6): 610621610-21.
AbstractProgress in biomedical technology (cochlear, vestibular, and retinal implants) has led to remarkable success in neurosensory restoration, particularly in the auditory system. However, outcomes vary considerably, even after accounting for comorbidity-for example, after cochlear implantation, some deaf children develop spoken language skills approaching those of their hearing peers, whereas other children fail to do so. Here, we review evidence that auditory deprivation has widespread effects on brain development, affecting the capacity to process information beyond the auditory system. After sensory loss and deafness, the brain's effective connectivity is altered within the auditory system, between sensory systems, and between the auditory system and centres serving higher order neurocognitive functions. As a result, congenital sensory loss could be thought of as a connectome disease, with interindividual variability in the brain's adaptation to sensory loss underpinning much of the observed variation in outcome of cochlear implantation. Different executive functions, sequential processing, and concept formation are at particular risk in deaf children. A battery of clinical tests can allow early identification of neurocognitive risk factors. Intervention strategies that address these impairments with a personalised approach, taking interindividual variations into account, will further improve outcomes.Copyright © 2016 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.