-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2013
Mineralocorticoid receptor antagonism attenuates experimental pulmonary hypertension.
- Ioana R Preston, Kristen D Sagliani, Rod R Warburton, Nicholas S Hill, Barry L Fanburg, and Iris Z Jaffe.
- Tupper Research Institute and Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA. ipreston@tuftsmedicalcenter.org
- Am. J. Physiol. Lung Cell Mol. Physiol. 2013 May 15;304(10):L678-88.
AbstractMineralocorticoid receptor (MR) activation stimulates systemic vascular and left ventricular remodeling. We hypothesized that MR contributes to pulmonary vascular and right ventricular (RV) remodeling of pulmonary hypertension (PH). We evaluated the efficacy of MR antagonism by spironolactone in two experimental PH models; mouse chronic hypoxia-induced PH (prevention model) and rat monocrotaline-induced PH (prevention and treatment models). Last, the biological function of the MR was analyzed in cultured distal pulmonary artery smooth muscle cells (PASMCs). In hypoxic PH mice, spironolactone attenuated the increase in RV systolic pressure, pulmonary arterial muscularization, and RV fibrosis. In rat monocrotaline-induced PH (prevention arm), spironolactone attenuated pulmonary vascular resistance and pulmonary vascular remodeling. In the established disease (treatment arm), spironolactone decreased RV systolic pressure and pulmonary vascular resistance with no significant effect on histological measures of pulmonary vascular remodeling, or RV fibrosis. Spironolactone decreased RV cardiomyocyte size modestly with no significant effect on RV mass, systemic blood pressure, cardiac output, or body weight, suggesting a predominantly local pulmonary vascular effect. In distal PASMCs, MR was expressed and localized diffusely. Treatment with the MR agonist aldosterone, hypoxia, or platelet-derived growth factor promoted MR translocation to the nucleus, activated MR transcriptional function, and stimulated PASMC proliferation, while spironolactone blocked these effects. In summary, MR is active in distal PASMCs, and its antagonism prevents PASMC proliferation and attenuates experimental PH. These data suggest that MR is involved in the pathogenesis of PH via effects on PASMCs and that MR antagonism may represent a novel therapeutic target for this disease.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.