• J. Comp. Neurol. · Sep 1988

    Development of the rat thalamus: II. Time and site of origin and settling pattern of neurons derived from the anterior lobule of the thalamic neuroepithelium.

    • J Altman and S A Bayer.
    • Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.
    • J. Comp. Neurol. 1988 Sep 15;275(3):378-405.

    AbstractShort-survival, sequential, and long-survival thymidine radiograms of rat embryos, fetuses, and young pups were analyzed in order to examine the time of origin, settling pattern, and neuroepithelial site of origin of the anterior thalamic nuclei--the lateral dorsal (lateral anterior), anterodorsal, anteroventral and anteromedial nuclei--and of two rostral midline structures--the anterior paraventricular and paratenial nuclei. The neurons of the lateral dorsal nucleus are generated over a 3-day period between days E14-E16 and their settling pattern displays a combined lateral-to-medial and dorsal-to-ventral neurogenetic gradient. The bulk of the neurons of the anteroventral nucleus are generated over a 3-day period between days E15-E17 and settle with an oblique lateral-to-medial and ventral-to-dorsal neurogenetic gradient. The bulk of the neurons of the anteromedial nucleus are generated over a 2-day period between days E16-E17 and show the same settling pattern as the anteroventral nucleus. The neurons of the anterodorsal nucleus are generated over a 3-day period between days E15-E17 and show a lateral-to-medial neurogenetic gradient. The bulk of the neurons of the central part and lateral part of the paraventricular nucleus are generated over a 2-day period (E16-E17 and E17-E18, respectively) and each part displays a ventral-to-dorsal neurogenetic gradient. Finally, the bulk of the neurons of the paratenial nucleus are generated over a 4-day period between days E15-E18 and settle with a lateral-to-medial neurogenetic gradient. Observations are presented that the anterior thalamic nuclei, constituting the distinct "limbic thalamus," derive from a discrete neuroepithelial source. This is the crescent-shaped germinal matrix lining the diencephalic (medial) wall of the hitherto unrecognized anterior transitional promontory, which we call the anterior thalamic neuroepithelial lobule. On day E16 three migratory streams leave the anterior neuroepithelial lobule and, on the basis of their labeling pattern in relation to the neurogenetic gradients of the anterior thalamic nuclei, they are identified, from dorsal to ventral, as the putative migratory streams of the anterodorsal, anteroventral, and lateral dorsal nuclei. On day E17 the putative migratory stream of the anteromedial nucleus appears to leave the same neuroepithelial region that on the previous days was the source of the anteroventral nucleus. Dorsally, two neuroepithelial patches persist after day E17 and these are identified as the putative cell lines of the anterior paraventricular and paratenial nuclei.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.