• Pain · Sep 1995

    Case Reports

    Electrical stimulation of precentral cortical area in the treatment of central pain: electrophysiological and PET study.

    • R Peyron, L Garcia-Larrea, M P Deiber, L Cinotti, P Convers, M Sindou, F Mauguière, and B Laurent.
    • Department of Neurology, Bellevue Hospital, Etienne, France.
    • Pain. 1995 Sep 1;62(3):275-86.

    AbstractThe clinical, electrophysiological and haemodynamic effects of precentral gyrus stimulation (PGS) as a treatment of refractory post-stroke pain were studied in 2 patients. The first patient had a right hemibody pain secondary to a left parietal infarct sparing the thalamus, while the second patient had left lower limb pain developed after a right mesencephalic infarct. In both cases, spontaneous pain was associated with hyperpathia, allodynia and hypoaesthesia in the painful territory involving both lemniscal and extra-lemniscal sensory modalities in patient 1, extra-lemniscal sensory modality only in patient 2. Both patients were treated with electrical PGS by means of a 4-pole electrode, the central sulcus being per-operatively located using the phase-reversal of the N20 wave of somatosensory evoked potentials. No sensory side effect, abnormal movement or epileptic seizure were observed during PGS. The analgesic effects were somatotopically distributed according to the localization of electrode on motor cortex. A satisfactory long-lasting pain control (60-70% on visual analog scale) as well as attenuation of nociceptive reflexes were obtained during PGS in the first patient. Pain relief was less marked and only transient (2 months) in patient 2, in spite of a similar operative procedure. In this patient, in whom PGS eventually evoked painful dysethesiae, no attenuation of nociceptive RIII reflex could be evidenced during PGS. Cerebral blood flow (CBF) was studied using emission tomography (PET) with O-labeled water. The sites of CBF increase during PGS were the same in both patients, namely the thalamus ipsilateral to PGS, cingulate gyrus, orbito-frontal cortex and brainstem. CBF increase in brainstem structures was greater and lasted longer in patient 1 while patient 2 showed a greater CBF increase in orbito-frontal and cingular regions. Our results suggest that PGS-induced analgesia is somatotopically mediated and does not require the integrity of somatosensory cortex and lemniscal system. PGS analgesic efficacy may be mainly related to increased synaptic activity in the thalamus and brainstem while changes in cingulate gyrus and orbito-frontal cortex may be rather related to attentional and/or emotional processes. The inhibitory control on pain would involve thalamic and/or brainstem relays on descending pathways down to the spinal cord segments, leading to a depression of nociceptive reflexes. Painful dysesthesiae during stimulation have to be distinguished from other innocuous sensory side effects, since they may compromise PGS efficacy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.