-
- Michael E Matheny, Randolph A Miller, T Alp Ikizler, Lemuel R Waitman, Joshua C Denny, Jonathan S Schildcrout, Robert S Dittus, and Josh F Peterson.
- Geriatric Research Education Clinical Center, Tennessee Valley Health System, Veterans Health Administration, Nashville, TN, USA. michael.matheny@vanderbilt.edu
- Med Decis Making. 2010 Nov 1;30(6):639-50.
ObjectivePatients with hospital-acquired acute kidney injury (AKI) are at risk for increased mortality and further medical complications. Evaluating these patients with a prediction tool easily implemented within an electronic health record (EHR) would identify high-risk patients prior to the development of AKI and could prevent iatrogenically induced episodes of AKI and improve clinical management.MethodsThe authors used structured clinical data acquired from an EHR to identify patients with normal kidney function for admissions from 1 August 1999 to 31 July 2003. Using administrative, computerized provider order entry and laboratory test data, they developed a 3-level risk stratification model to predict each of 2 severity levels of in-hospital AKI as defined by RIFLE criteria. The severity levels were defined as 150% or 200% of baseline serum creatinine. Model discrimination and calibration were evaluated using 10-fold cross-validation.ResultsCross-validation of the models resulted in area under the receiver operating characteristic (AUC) curves of 0.75 (150% elevation) and 0.78 (200% elevation). Both models were adequately calibrated as measured by the Hosmer-Lemeshow goodness-of-fit test chi-squared values of 9.7 (P = 0.29) and 12.7 (P = 0.12), respectively.ConclusionsThe authors generated risk prediction models for hospital-acquired AKI using only commonly available electronic data. The models identify patients at high risk for AKI who might benefit from early intervention or increased monitoring.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.