• Brain research · Oct 1992

    Three types of sodium channels in adult rat dorsal root ganglion neurons.

    • J M Caffrey, D L Eng, J A Black, S G Waxman, and J D Kocsis.
    • Department of Neurology, Yale University School of Medicine, New Haven, CT 06510.
    • Brain Res. 1992 Oct 2;592(1-2):283-97.

    AbstractSeveral types of Na+ currents have previously been demonstrated in dorsal root ganglion (DRG) neurons isolated from neonatal rats, but their expression in adult neurons has not been studied. Na+ current properties in adult dorsal root ganglion (DRG) neurons of defined size class were investigated in isolated neurons maintained in primary culture using a combination of microelectrode current clamp, patch voltage clamp and immunocytochemical techniques. Intracellular current clamp recordings identified differing relative contributions of TTX-sensitive and -resistant inward currents to action potential waveforms in DRG neuronal populations of defined size. Patch voltage clamp recordings identified three distinct kinetic types of Na+ current differentially distributed among these size classes of DRG neurons. 'Small' DRG neurons co-express two types of Na+ current: (i) a rapidly-inactivating, TTX-sensitive 'fast' current and (ii) a slowly-activating and -inactivating, TTX-resistant 'slow' current. The TTX-sensitive Na+ current in these cells was almost completely inactivated at typical resting potentials. 'Large' cells expressed a single TTX-sensitive Na+ current identified as 'intermediate' by its inactivation rate constants. 'Medium'-sized neurons either co-expressed 'fast' and 'slow' current or expressed only 'intermediate' current. Na+ channel expression in these size classes was also measured by immunocytochemical techniques. An antibody against brain-type Na+ channels (Ab7493)10 labeled small and large neurons with similar intensity. These results demonstrate that three types of Na+ currents can be detected which correlate with electrogenic properties of physiologically and anatomically distinct populations of adult rat DRG neurons.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…