-
IEEE Trans Biomed Eng · Dec 2006
Analysis of biomedical signals by the lempel-Ziv complexity: the effect of finite data size.
- Jing Hu, Jianbo Gao, and Jose C Principe.
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA. jhu@ecel.ufl.edu
- IEEE Trans Biomed Eng. 2006 Dec 1;53(12 Pt 2):2606-9.
AbstractThe Lempel-Ziv (LZ) complexity and its variants are popular metrics for characterizing biological signals. Proper interpretation of such analyses, however, has not been thoroughly addressed. In this letter, we study the the effect of finite data size. We derive analytic expressions for the LZ complexity for regular and random sequences, and employ them to develop a normalization scheme. To gain further understanding, we compare the LZ complexity with the correlation entropy from chaos theory in the context of epileptic seizure detection from EEG data, and discuss advantages of the normalized LZ complexity over the correlation entropy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.