• Journal of neurotrauma · Dec 2016

    Review

    Inhibition of glycogen synthase kinase-3: an emerging target in the treatment of traumatic brain injury.

    • Seong S Shim and Grace E Stutzmann.
    • 1 Atlanta VA Medical Center, Mental Health Service Line , Decatur, Georgia .
    • J. Neurotrauma. 2016 Dec 1; 33 (23): 2065-2076.

    AbstractAlthough traumatic brain injury (TBI) has been a major public health concern for decades, the pathophysiological mechanism of TBI is not clearly understood, and an effective medical treatment of TBI is not available at present. Of particular concern is sustained TBI, which has a strong tendency to take a deteriorating neurodegenerative course into chronic traumatic encephalopathy (CTE) and dementia, including Alzheimer's disease. Tauopathy and beta amyloid (Aβ) plaques are known to be the key pathological markers of TBI, which contribute to the progressive deterioration associated with TBI such as CTE and Alzheimer's disease. The multiple lines of evidence strongly suggest that the inhibition of glycogen synthase kinase-3 (GSK-3) is a potential target in the treatment of TBI. GSK-3 constitutively inhibits neuroprotective processes and promotes apoptosis. After TBI, GSK-3 is inhibited through the receptor tyrosine kinase (RTK) and canonical Wnt signaling pathways as an innate neuroprotective mechanism against TBI. GSK-3 inhibition via GSK-3 inhibitors and drugs activating RTK or Wnt signaling is likely to reinforce the innate neuroprotective mechanism. GSK-3 inhibition studies using rodent TBI models demonstrate that GSK-3 inhibition produces diverse neuroprotective actions such as reducing the size of the traumatic injury, tauopathy, Aβ accumulation, and neuronal death, by releasing and activating neuroprotective substrates from GSK-3 inhibition. These effects are correlated with reduced TBI-induced behavioral and cognitive symptoms. Here, we review studies on the therapeutic effects of GSK-3 inhibition in TBI rodent models, and critically discuss the issues that these studies address.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.