• Molecular pharmacology · Sep 2007

    Comparative Study

    Modulation of presynaptic beta3-containing GABAA receptors limits the immobilizing actions of GABAergic anesthetics.

    • Christian Grasshoff, Rachel Jurd, Uwe Rudolph, and Bernd Antkowiak.
    • Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care, Eberhard-Karls-University, Tuebingen, Germany. christian.grasshoff@uni-tuebingen.de
    • Mol. Pharmacol. 2007 Sep 1;72(3):780-7.

    AbstractIntravenous GABAergic anesthetics are potent hypnotics but are rather ineffective in depressing movements. Immobility is mediated, in part, by the ventral horn of the spinal cord. We hypothesized that the efficacy of these anesthetics in producing immobility is compromised by the activation of GABA(A) receptors located presynaptically, which modulate GABA release onto neurons in the ventral horn. Because anesthetics acting by modulation of GABA(A) receptor function require GABA to be present at its binding site, a decrease in GABA release would abate their efficacy in reducing neuronal excitability. Here we report that in organotypic spinal cord slices, the efficacy of the intravenous anesthetic etomidate to depress network activity of ventral horn neurons is limited to approximately 60% at concentrations greater than 1 microM that produce immobility. Depression of spinal network activity was almost abolished in spinal slices from beta3(N265M) knock-in mice. In the wild type, etomidate prolonged decay times of GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) and concomitantly reduced the frequency of action potential-dependent IPSCs. Etomidate prolonged the decay time of GABA(A) receptors at all tested concentrations. At concentrations greater than 1.0 microM, anesthetic-induced decrease of GABA release via modulation of presynaptic GABA(A) receptors and enhancement of postsynaptic GABA(A) receptor-function compensated for each other. The results suggest that the limited immobilizing efficacy of these agents is probably due to a presynaptic mechanism and that GABAergic agents with a specificity for post-versus presynaptic receptors would probably have much stronger immobilizing actions, pointing out novel avenues for drug development.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.