-
Stat Methods Med Res · Feb 2004
ReviewFunctional data analysis in longitudinal settings using smoothing splines.
- Wensheng Guo.
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6021, USA. wguo@cceb.upenn.edu
- Stat Methods Med Res. 2004 Feb 1;13(1):49-62.
AbstractData in many experiments arise as curves and therefore it is natural to use a curve as a basic unit in the analysis, which is termed functional data analysis (FDA). In longitudinal studies, recent developments in FDA have extended classical linear models and linear mixed effects models to functional linear models (also termed varying-coefficient models) and functional mixed effects models. In this paper we focus our review on the functional mixed effects models using smoothing splines, because functional linear models are special cases of this more general framework. Due to the connection between smoothing splines and linear mixed effects models, functional mixed effects models can be fitted using existing software such as SAS Proc Mixed. A case study is presented as an illustration.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.