• J Neuroimaging · Sep 2016

    3D Super-Resolution Motion-Corrected MRI: Validation of Fetal Posterior Fossa Measurements.

    • Danielle B Pier, Ali Gholipour, Onur Afacan, Clemente Velasco-Annis, Sean Clancy, Kush Kapur, Judy A Estroff, and Simon K Warfield.
    • Department of Neurology, Boston Children's Hospital, Boston, MA.
    • J Neuroimaging. 2016 Sep 1; 26 (5): 539-44.

    PurposeCurrent diagnosis of fetal posterior fossa anomalies by sonography and conventional MRI is limited by fetal position, motion, and by two-dimensional (2D), rather than three-dimensional (3D), representation. In this study, we aimed to validate the use of a novel magnetic resonance imaging (MRI) technique, 3D super-resolution motion-corrected MRI, to image the fetal posterior fossa.MethodsFrom a database of pregnant women who received fetal MRIs at our institution, images of 49 normal fetal brains were reconstructed. Six measurements of the cerebellum, vermis, and pons were obtained for all cases on 2D conventional and 3D reconstructed MRI, and the agreement between the two methods was determined using concordance correlation coefficients. Concordance of axial and coronal measurements of the transcerebellar diameter was also assessed within each method.ResultsBetween the two methods, the concordance of measurements was high for all six structures (P < .001), and was highest for larger structures such as the transcerebellar diameter. Within each method, agreement of axial and coronal measurements of the transcerebellar diameter was superior in 3D reconstructed MRI compared to 2D conventional MRI (P < .001).ConclusionsThis comparison study validates the use of 3D super-resolution motion-corrected MRI for imaging the fetal posterior fossa, as this technique results in linear measurements that have high concordance with 2D conventional MRI measurements. Lengths of the transcerebellar diameter measured within a 3D reconstruction are more concordant between imaging planes, as they correct for fetal motion and orthogonal slice acquisition. This technique will facilitate further study of fetal abnormalities of the posterior fossa.Copyright © 2016 by the American Society of Neuroimaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.