• Brain research · Aug 2003

    Comparative Study

    Role of central NMDA versus non-NMDA receptor in spinal withdrawal reflex in spinal anesthetized rats under normal and hyperexcitable conditions.

    • Hao-Jun You, Carsten Dahl Mørch, Jun Chen, and Lars Arendt-Nielsen.
    • Center for Sensory-Motor Interaction (SMI), Laboratory for Experimental Pain Research, Aalborg University, Fredrik Bajers Vej 7, Building D-3, DK-9220 Aalborg, Denmark.
    • Brain Res. 2003 Aug 15;981(1-2):12-22.

    AbstractThe present study aimed to investigate the role of central N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the spinal withdrawal reflex assessed by recording single motor unit (SMU) electromyogram (EMG) response to peripheral mechanical (pressure, pinch) stimuli and repeated electrical stimuli at 3 and 20 Hz. During normal conditions, intrathecal administration of MK-801 and CNQX apparently depressed mechanically and electrically (3 Hz) evoked EMG responses in a dose-dependent manner (10, 20 and 40 nmol in 10 microl). In contrast, the after-discharges to 20 Hz electrical stimuli were suppressed only by CNQX treatment, not by MK-801 treatment. This indicates that the central mechanisms underlying the different frequencies of electrically evoked withdrawal reflex may be different. During peripheral bee venom (BV, 0.2 mg/50 microl) induced inflammation and central sensitization, the enhanced SMU EMG responses including after-discharges to pinch stimuli and 3 Hz electrical stimuli were depressed significantly by treatments with both MK-801 and CNQX. However, the enhanced SMU activities to innocuous pressure stimuli were depressed only by treatment with CNQX. Likewise, enhanced long lasting after-discharges elicited by 20 Hz electrical stimuli were also only depressed by CNQX, indicating that different central mechanisms are involved in the persistent hyperexcitability during BV-induced inflammation. The data suggest that both central NMDA and non-NMDA receptors play important roles in the transmission of nociceptive information under normal conditions. In BV-induced inflammation, however, central non-NMDA receptors, but not NMDA receptors, play a pivotal role in the generation of persistent hyperexcitability to mechanical and electrical stimuli at different frequencies (3 Hz, 20 Hz).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…