• Neuropharmacology · May 2013

    Maternal deprivation effects on brain plasticity and recognition memory in adolescent male and female rats.

    • Eva M Marco, Manuel Valero, Oscar de la Serna, Barbara Aisa, Erika Borcel, Maria Javier Ramirez, and María-Paz Viveros.
    • Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
    • Neuropharmacology. 2013 May 1;68:223-31.

    AbstractData from both human and animal studies suggest that exposure to stressful life events at neonatal stages may increase the risk of psychopathology at adulthood. In particular, early maternal deprivation, 24 h at postnatal day (pnd) 9, has been associated with persistent neurobehavioural changes similar to those present in developmental psychopathologies such as depression and schizophrenic-related disorders. Most neuropsychiatric disorders first appear during adolescence, however, the effects of MD on adolescent animals' brain and behaviour have been scarcely explored. In the present study, we aimed to investigate the emotional and cognitive consequences of MD in adolescent male and female rats, as well as possible underlying neurobiological mechanisms within frontal cortex and hippocampus. Animals were exposed to a battery of behavioural tasks, from pnd 35 to 42, to evaluate cognitive [spontaneous alternation task (SAT) and novel object test (NOT)] and anxiety-related responses [elevated plus maze (EPM)] during adolescence. Changes in neuronal and glial cells, alterations in synaptic plasticity as well as modifications in cannabinoid receptor expression were investigated in a parallel group of control and adolescent (pnd 40) male and female animals. Notably, MD induced a significant impairment in recognition memory exclusively among females. A generalized decrease in NeuN expression was found in MD animals, together with an increase in hippocampal glial fibrillar acidic protein (GFAP) expression exclusively among MD adolescent males. In addition, MD induced in the frontal cortex and hippocampus of male and female adolescent rats a significant reduction in brain derived neurotrophic factor (BDNF) and postsynaptic density (PSD95) levels, together with a decrease in synaptophysin in frontal cortex and neural cell adhesion molecule (NCAM) in hippocampus. MD induced, in animals of both sexes, a significant reduction in CB1R expression, but an increase in CB2R that was statistically significant only for the frontal cortex. Taken together, these results indicate that adolescent females are more vulnerable than males to the cognitive deficits derived from MD despite the changes in neural cells, cannabinoid receptors, as well as the reduction in neural plasticity seem to be similar in both sexes. Further investigation is needed to understand the neurobiological mechanisms underlying the sexual dimorphisms associated to the MD effects, and thus, for a better understanding of the specific sex-dependent vulnerabilities to early life stress. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.Copyright © 2012 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.