• Medical hypotheses · Sep 2013

    Hypothesizing that designer drugs containing cathinones ("bath salts") have profound neuro-inflammatory effects and dangerous neurotoxic response following human consumption.

    • Kenneth Blum, M Foster Olive, Kevin K W Wang, Marcelo Febo, Joan Borsten, John Giordano, Mary Hauser, and Mark S Gold.
    • Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610-0256, USA. drd2gene@ufl.edu
    • Med. Hypotheses. 2013 Sep 1;81(3):450-5.

    AbstractConsensus in the most recent literature indicates that psychoactive "bath salts" is a relatively new drug-combination that was added to Schedule I classification in October 2011. Common ingredients include the cathinone analogs: mephedrone and methylenedioxypyrovalerone (MDPV). The mechanism of action of these synthetic cathinone analogs has not yet been well studied. We propose an intensive systematic investigation to determine the potential for cathinones to produce neurotoxic effects in various brain regions. In spite of a lack of evidence, for neurotoxicity there are number of horrific cases now on record that suggest intensification of research is needed. For example, a suicide by hanging had high 3,4-MDPV concentration while a driver under the influence had the highest reported methylone (MEPH) concentration. More interestingly, there have been consistent case reports indicating delayed responses, including: severe agitation with possible psychosis, suicidal ideation, rhabdomyolysis, hypertension, tachycardia, and death. In animal studies, amphetamine (AMPH), methamphetamine (METH) and cocaine release dopamine (DA), similarly to the action of cathinone and particular cathinone analogues. Two components of bath salts, MEPH and MDPV produce opposite effects at human dopamine transporter (hDAT) comparable to METH and cocaine, respectively. Moreover, it has already been found by others that MEPH is almost as potent as METH; and MDPV is much more potent than cocaine with longer lasting effects. It has been conjectured correctly that bath salts containing MDPV and MEPH (or a similar drug) might be expected both, to initially release DA and subsequently prevent its reuptake via hDAT. The null hypothesis, that cathinones do not cause neurotoxicity to dopamine nerve endings of the striatum, seems parsimonious and requires intensive investigation. Our hypothesis is that when consumed by humans, cathinones may induce neurotoxic pathways involving the neuro-glial-microglia and/or specific inflammation, that may help explain the clinically observed delayed response. We intend to explore this hypothesis utilizing a novel proteomic and biomarker technique developed by scientists at the McKnight Brain Institute, University of Florida as well as magnetic-resonance imaging across pre-frontal orbital cortex-cingulate gyrus and mesolimbic pathways of the brain of rodents.Copyright © 2013 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…