• Journal of neurotrauma · Nov 2009

    Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration.

    • Zhiyong Chen, Frank C Tortella, Jitendra R Dave, Vivienne S Marshall, Diana L Clarke, George Sing, Fu Du, and X-C May Lu.
    • Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA. Zhiyong.chen@amedd.army.mil
    • J. Neurotrauma. 2009 Nov 1;26(11):1987-97.

    AbstractTo identify a viable cell source with potential neuroprotective effects, we studied amnion-derived multipotent progenitor (AMP) cells in a rat model of penetrating ballistic-like brain injury (PBBI). AMP cells were labeled with fluorescent dye PKH26 and injected in rats immediately following right hemispheric PBBI or sham PBBI surgery by ipsilateral i.c.v. administration. At 2 weeks post-injury, severe necrosis developed along the PBBI tract and axonal degeneration was prominent along the corpus callosum (cc) and in the ipsilateral thalamus. Injected AMP cells first entered the subventricular zone (SVZ) in both sham and PBBI rats. Further AMP cell migration along the cc only occurred in PBBI animals. No significant difference in injury volume was observed across all treatment groups. In contrast, treatment with AMP cells significantly attenuated axonal degeneration in both the thalamus and the cc. Interestingly, PKH26-labeled AMP cells were detected only in the SVZ and the cc (in parallel with the axonal degeneration), but not in the thalamus. None of the labeled AMP cells appeared to express neural differentiation, as evidenced by the lack of double labeling with nestin, S-100, GFAP, and MAP-2 immunostaining. In conclusion, AMP cell migration was specifically induced by PBBI and requires SVZ homing, yet the neuroprotective effect of intracerebral ventrical treatment using AMP cells was not limited to the area where the cells were present. This suggests that the attenuation of the secondary brain injury following PBBI was likely to be mediated by mechanisms other than cell replacement, possibly through delivery or sustained secretion of neurotrophic factors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.