• Int J Crit Illn Inj Sci · Apr 2015

    Predictors of 1 year mortality in adult injured patients admitted to the trauma center.

    • Vikas Verma, Girish Kumar Singh, Emilie Jb Calvello, Santoshkumar Department of Orthopaedics, King George's Medical University Trauma Centre, King George's Medical University, Lucknow, India., Vineet Sharma, and Mamta Harjai.
    • Department of Orthopaedics, All India Institute of Medical Sciences, Patna, Bihar, India.
    • Int J Crit Illn Inj Sci. 2015 Apr 1;5(2):73-9.

    BackgroundTraditional approach to predicting trauma-related mortality utilizes scores based on anatomical, physiological, or a combination of both types of criteria. However, several factors are reported in literature to predict mortality independent of severity scores. The objectives of the study were to identify predictors of 1 year mortality and determine their magnitude and significance of association in a resource constrained scenario.Materials And MethodsProspective observational study enrolled 572 patients. Information regarding factors known to affect mortality was recorded. Other factors which may be important in resource constrained settings were also included. This included referral from a peripheral hospital, number of surgeries performed on the patient, and his socioeconomic status (below poverty line (BPL) card). Patients were followed till death or upto a period of 1year. Logistic regression, actuarial survival analysis, and Cox proportionate hazard model were used to identify predictors of 1year mortality. Limited estimate of external validity of the study was obtained using bootstrapping.ResultsAge of patient, Injury Severity Score (ISS), abnormal activated partial thromboplastin time (APTT), Glasgow Coma Scale (GCS) score at admission, and systolic blood pressure (BP) at admission were found to significantly predict mortality on logistic regression and Cox proportionate hazard models. Abnormal respiratory rate at admission was found to significantly predict mortality in the logistic regression model, but no such association was seen in Cox proportionate hazard model. Bootstrapping of the logistic regression model and Cox proportionate hazard model provide us with a set of factors common to both the models. These were age, ISS, APTT, and GCS score at admission.ConclusionMultivariate analysis (logistic and Cox proportionate hazard analysis) and subsequent bootstrapping provide us with a set of factors which may be considered as valid predictors universally. However, since bootstrapping only provides limited estimates of external validity, there is a need to test these factors against the well accepted requirements of external validity namely population, ecological, and temporal validity.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…