• J. Cereb. Blood Flow Metab. · Nov 2003

    Review

    Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis.

    • Ching-Ping Chih and Eugene L Roberts Jr.
    • Geriatric Research, Education, and Clinical Center, and Research Office, Miami VA Medical Center, Miami, Florida, USA.
    • J. Cereb. Blood Flow Metab. 2003 Nov 1;23(11):1263-81.

    AbstractGlucose had long been thought to fuel oxidative metabolism in active neurons until the recently proposed astrocyte-neuron lactate shuttle hypothesis (ANLSH) challenged this view. According to the ANLSH, activity-induced uptake of glucose takes place predominantly in astrocytes, which metabolize glucose anaerobically. Lactate produced from anaerobic glycolysis in astrocytes is then released from astrocytes and provides the primary metabolic fuel for neurons. The conventional hypothesis asserts that glucose is the primary substrate for both neurons and astrocytes during neural activity and that lactate produced during activity is removed mainly after neural activity. The conventional hypothesis does not assign any particular fraction of glucose metabolism to the aerobic or anaerobic pathways. In this review, the authors discuss the theoretical background and critically review the experimental evidence regarding these two hypotheses. The authors conclude that the experimental evidence for the ANLSH is weak, and that existing evidence and theoretical considerations support the conventional hypothesis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.