• Anesthesiology · Jun 2016

    Management of One-lung Ventilation: Impact of Tidal Volume on Complications after Thoracic Surgery.

    • Randal S Blank, Douglas A Colquhoun, Marcel E Durieux, Benjamin D Kozower, Timothy L McMurry, S Patrick Bender, and Bhiken I Naik.
    • From the Department of Anesthesiology (R.S.B., D.A.C., M.E.D., B.I.N.) and Department of Surgery (B.D.K.), University of Virginia Health System, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia (T.L.M.); and Department of Anesthesiology, University of Vermont College of Medicine, Burlington, Vermont (S.P.B.).
    • Anesthesiology. 2016 Jun 1; 124 (6): 1286-95.

    BackgroundThe use of lung-protective ventilation (LPV) strategies may minimize iatrogenic lung injury in surgical patients. However, the identification of an ideal LPV strategy, particularly during one-lung ventilation (OLV), remains elusive. This study examines the role of ventilator management during OLV and its impact on clinical outcomes.MethodsData were retrospectively collected from the hospital electronic medical record and the Society of Thoracic Surgery database for subjects undergoing thoracic surgery with OLV between 2012 and 2014. Mean tidal volume (VT) during two-lung ventilation and OLV and ventilator driving pressure (ΔP) (plateau pressure - positive end-expiratory pressure [PEEP]) were analyzed for the 1,019 cases that met the inclusion criteria. Associations between ventilator parameters and clinical outcomes were examined by multivariate linear regression.ResultsAfter the initiation of OLV, 73.3, 43.3, 18.8, and 7.2% of patients received VT greater than 5, 6, 7, and 8 ml/kg predicted body weight, respectively. One hundred and eighty-four primary and 288 secondary outcome events were recorded. In multivariate logistic regression modeling, VT was inversely related to the incidence of respiratory complications (odds ratio, 0.837; 95% CI, 0.729 to 0.958), while ΔP predicted the development of major morbidity when modeled with VT (odds ratio, 1.034; 95% CI, 1.001 to 1.068).ConclusionsLow VT per se (i.e., in the absence of sufficient PEEP) has not been unambiguously demonstrated to be beneficial. The authors found that a large proportion of patients continue to receive high VT during OLV and that VT was inversely related to the incidence of respiratory complications and major postoperative morbidity. While low (physiologically appropriate) VT is an important component of an LPV strategy for surgical patients during OLV, current evidence suggests that, without adequate PEEP, low VT does not prevent postoperative respiratory complications. Thus, use of physiologic VT may represent a necessary, but not independently sufficient, component of LPV.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…