• Respirology · Apr 2010

    Changes in the highest frequency of breath sounds without wheezing during methacholine inhalation challenge in children.

    • Chizu Habukawa, Katsumi Murakami, Hiroyuki Mochizuki, Satoru Takami, Reiko Muramatsu, Hiromi Tadaki, Satomi Hagiwara, Takahisa Mizuno, Hirokazu Arakawa, and Yukio Nagasaka.
    • Department of Pediatrics, Minami Wakayama Medical Center, Tanabe, Japan. gd6c-hbkw@asahi-net.or.jp
    • Respirology. 2010 Apr 1;15(3):485-90.

    Background And ObjectiveIt is difficult for clinicians to identify changes in breath sounds caused by bronchoconstriction when wheezing is not audible. A breath sound analyser can identify changes in the frequency of breath sounds caused by bronchoconstriction. The present study aimed to identify the changes in the frequency of breath sounds during bronchoconstriction and bronchodilatation using a breath sound analyser.MethodsThirty-six children (8.2 +/- 3.7 years; males : females, 22 : 14) underwent spirometry, methacholine inhalation challenge and breath sound analysis. Methacholine inhalation challenge was performed and baseline respiratory resistance, minimum dose of methacholine (bronchial sensitivity) and speed of bronchoconstriction in response to methacholine (Sm: bronchial reactivity) were calculated. The highest frequency of inspiratory breath sounds (HFI), the highest frequency of expiratory breath sounds (HFE) and the percentage change in HFI and HFE were determined. The HFI and HFE were compared before methacholine inhalation (pre-HFI and pre-HFE), when respiratory resistance reached double the baseline value (max HFI and max HFE), and after bronchodilator inhalation (post-HFI and post-HFE).ResultsBreath sounds increased during methacholine-induced bronchoconstriction. Max HFI was significantly greater than pre-HFI (P < 0.001), and decreased to the basal level after bronchodilator inhalation. Post-HFI was significantly lower than max HFI (P < 0.001). HFI and HFE were also significantly changed (P < 0.001). The percentage change in HFI showed a significant correlation with the speed of bronchoconstriction in response to methacholine (P = 0.007).ConclusionsMethacholine-induced bronchoconstriction significantly increased HFI, and the increase in HFI was correlated with bronchial reactivity.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.