-
Review Comparative Study
Comparison of neural network predictors in the classification of tracheal-bronchial breath sounds by respiratory auscultation.
- Ross Folland, Evor Hines, Ritaban Dutta, Pascal Boilot, and David Morgan.
- Intelligent Systems Engineering Laboratory, Electrical and Electronics Division, School of Engineering, University of Warwick, Coventry CV4 7AL, UK. r.s.folland@warwick.ac.uk
- Artif Intell Med. 2004 Jul 1;31(3):211-20.
AbstractDespite extensive research in the area of identification and discrimination of tracheal-bronchial breath sounds by computer analysis, the process of identifying auscultated sounds is still subject to high estimation uncertainties. Here we assess the performance of the relatively new constructive probabilistic neural network (CPNN) against the more common classifiers, namely the multilayer perceptron (MLP) and radial basis function network (RBFN), in classifying a broad range of tracheal-bronchial breath sounds. We present our data as signal estimation models of the tracheal-bronchial frequency spectra. We have examined the trained structure of the CPNN with respect to the other architectures and conclude that this architecture offers an attractive means with which to analyse this type of data. This is based partly on the classification accuracies attained by the CPNN, MLP and RBFN which were 97.8, 77.8 and 96.2%, respectively. We concluded that CPNN and RBFN networks are capable of working successfully with this data, with these architectures being acceptable in terms of topological size and computational overhead requirements. We further believe that the CPNN is an attractive classification mechanism for auscultated data analysis due to its optimal data model generation properties and computationally lightweight architecture.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.