Artificial intelligence in medicine
-
The novel coronavirus disease 2019 (COVID-19) is considered a pandemic by the World Health Organization (WHO). As of April 3, 2020, there were 1,009,625 reported confirmed cases, and 51,737 reported deaths. Doctors have been faced with a myriad of patients who present with many different symptoms. This raises two important questions. What are the common symptoms, and what are their relative importance? ⋯ Based on the dataset, and the feature selection algorithms employed here, symptoms of Fever, Cough, Fatigue, Sore Throat and Shortness of Breath are important symptoms of COVID-19. The VBFW algorithm also indicates that Fever and Cough symptoms were especially indicative of COVID-19, for the confirmed cases that are documented in our database.
-
Question answering (QA), the identification of short accurate answers to users questions written in natural language expressions, is a longstanding issue widely studied over the last decades in the open-domain. However, it still remains a real challenge in the biomedical domain as the most of the existing systems support a limited amount of question and answer types as well as still require further efforts in order to improve their performance in terms of precision for the supported questions. Here, we present a semantic biomedical QA system named SemBioNLQA which has the ability to handle the kinds of yes/no, factoid, list, and summary natural language questions. ⋯ Compared with the current state-of-the-art biomedical QA systems, SemBioNLQA, a fully automated system, has the potential to deal with a large amount of question and answer types. SemBioNLQA retrieves quickly users' information needs by returning exact answers (e.g., "yes", "no", a biomedical entity name, etc.) and ideal answers (i.e., paragraph-sized summaries of relevant information) for yes/no, factoid and list questions, whereas it provides only the ideal answers for summary questions. Moreover, experimental evaluations performed on biomedical questions and answers provided by the BioASQ challenge especially in 2015, 2016 and 2017 (as part of our participation), show that SemBioNLQA achieves good performances compared with the most current state-of-the-art systems and allows a practical and competitive alternative to help information seekers find exact and ideal answers to their biomedical questions. The SemBioNLQA source code is publicly available at https://github.com/sarrouti/sembionlqa.
-
Diabetes mellitus (DM) is a metabolic disorder that causes abnormal blood glucose (BG) regulation that might result in short and long-term health complications and even death if not properly managed. Currently, there is no cure for diabetes. However, self-management of the disease, especially keeping BG in the recommended range, is central to the treatment. This includes actively tracking BG levels and managing physical activity, diet, and insulin intake. The recent advancements in diabetes technologies and self-management applications have made it easier for patients to have more access to relevant data. In this regard, the development of an artificial pancreas (a closed-loop system), personalized decision systems, and BG event alarms are becoming more apparent than ever. Techniques such as predicting BG (modeling of a personalized profile), and modeling BG dynamics are central to the development of these diabetes management technologies. The increased availability of sufficient patient historical data has paved the way for the introduction of machine learning and its application for intelligent and improved systems for diabetes management. The capability of machine learning to solve complex tasks with dynamic environment and knowledge has contributed to its success in diabetes research. ⋯ Due to the complexity of BG dynamics, it remains difficult to achieve a universal model that produces an accurate prediction in every circumstance (i.e., hypo/eu/hyperglycemia events). Recently, machine learning techniques have received wider attention and increased popularity in diabetes research in general and BG prediction in particular, coupled with the ever-growing availability of a self-collected health data. The state-of-the-art demonstrates that various machine learning techniques have been tested to predict BG, such as recurrent neural networks, feed-forward neural networks, support vector machines, self-organizing maps, the Gaussian process, genetic algorithm and programs, deep neural networks, and others, using various group of input parameters and training algorithms. The main limitation of the current approaches is the lack of a well-defined approach to estimate carbohydrate intake, which is mainly done manually by individual users and is prone to an error that can severely affect the predictive performance. Moreover, a universal approach has not been established to estimate and quantify the approximate effect of physical activities, stress, and infections on the BG level. No researchers have assessed model predictive performance during stress and infection incidences in a free-living condition, which should be considered in future studies. Furthermore, a little has been done regarding model portability that can capture inter- and intra-variability among patients. It seems that the effect of time lags between the CGM readings and the actual BG levels is not well covered. However, in general, we foresee that these developments might foster the advancement of next-generation BG prediction algorithms, which will make a great contribution in the effort to develop the long-awaited, so-called artificial pancreas (a closed-loop system).
-
Visual field testing via standard automated perimetry (SAP) is a commonly used glaucoma diagnosis method. Applying machine learning techniques to the visual field test results, a valid clinical diagnosis of glaucoma solely based on the SAP data is provided. In order to reflect structural-functional patterns of glaucoma on the automated diagnostic models, we propose composite variables derived from anatomically grouped visual field clusters to improve the prediction performance. A set of machine learning-based diagnostic models are designed that implement different input data manipulation, dimensionality reduction, and classification methods. ⋯ A glaucoma diagnosis model giving an AUC of 0.912 was constructed by applying machine learning techniques to SAP data. The results show that dimensionality reduction not only reduces dimensions of the input space but also enhances the classification performance. The variable selection results show that the proposed composite variables from visual field clustering play a key role in the diagnosis model.
-
Arden Syntax is a standard for representing and sharing medical knowledge in form of independent modules and looks back on a history of 25 years. Its traditional field of application is the monitoring of clinical events such as generating an alert in case of occurrence of a critical laboratory result. Arden Syntax Medical Logic Modules must be able to retrieve patient data from the electronic medical record in order to enable automated decision making. For patient data with a simple structure, for instance a list of laboratory results, or, in a broader view, any patient data with a list or table structure, this mapping process is straightforward. Nevertheless, if patient data are of a complex nested structure the mapping process may become tedious. Two clinical requirements - to process complex microbiology data and to decrease the time between a critical laboratory event and its alerting by monitoring Health Level 7 (HL7) communication - have triggered the investigation of approaches for providing complex patient data from electronic medical records inside Arden Syntax Medical Logic Modules. ⋯ The most promising approach by far was to map arbitrary XML structures onto congruent complex data types of Arden Syntax through deserialization. This approach is generic insofar as a data mapper based on this approach can transform any patient data provided in appropriate XML format. Therefore it could help overcome a major obstacle for integrating clinical decision support functions into clinical information systems. Theoretically, the deserialization approach would even allow mapping entire patient records onto Arden Syntax objects in one single step. We recommend extending the Arden Syntax specification with an appropriate XML data format.