• Shock · Oct 2010

    Molecular analysis of sepsis-induced changes in the liver: microarray study in a porcine model of acute fecal peritonitis with fluid resuscitation.

    • Hannah van Malenstein, Joost Wauters, Dieter Mesotten, Lies Langouche, Rita De Vos, Alexander Wilmer, and Jos van Pelt.
    • Liver Research Facility & Labo Hepatology, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.
    • Shock. 2010 Oct 1;34(4):427-36.

    AbstractSepsis and septic shock are frequently encountered in the intensive care unit. Despite the evolution of intensive care medicine during the last decades, septic shock is still associated with high mortality and complications of sepsis such as cholestasis, liver dysfunction, and massive intravascular volume deficit. Little is known about the whole pattern of changes at the transcriptional level during the development of acute sepsis. Here we present a detailed molecular biological analysis of the events in the liver during the first day of acute bacterial infection in a clinically relevant model of porcine peritoneal sepsis. Before and 21 h after induction of sepsis by autologous fecal inoculum, liver samples were taken for microarray analysis. There were two groups of animals (7 control and 8 sepsis), two of each group where used in microarray, the remaining were used for confirmation of selected genes by real-time polymerase chain reaction. Pathway analysis revealed that in acute sepsis, gene expression was significantly changed in processes related to apoptosis, inflammation, and oxidant/redox balance. Although after 21 h these animals are expected to die within the next 3 to 4 h from massive complications, functional induction of apoptosis could not be confirmed. Computer analysis identified three key regulator genes (IL8, CCL2, and CXCL2) among the first genes to be upregulated specifically in the sepsis group, and these can directly or indirectly control the bulk of the sepsis response. Induction of inflammatory mediators by sepsis was supported by the detection of corresponding cytokines (interleukin 6 and interleukin 8) in the blood.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.