-
- Traci C Green, Ryan Black, Jill M Grimes Serrano, Simon H Budman, and Stephen F Butler.
- Brown Medical School, Providence, Rhode Island, United States of America. traci.c.green@gmail.com
- Plos One. 2011 Jan 1;6(11):e27244.
BackgroundAs a population, non-medical prescription opioid users are not well-defined. We aimed to derive and describe typologies of prescription opioid use and nonmedical use using latent class analysis in an adult population being assessed for substance abuse treatment.MethodsLatent class analysis was applied to data from 26,314 unique respondents, aged 18-70, self-reporting past month use of a prescription opioid out of a total of 138,928 cases (18.9%) collected by the Addiction Severity Index-Multimedia Version (ASI-MV®), a national database for near real-time prescription opioid abuse surveillance. Data were obtained from November 2005 through December 2009. Substance abuse treatment, criminal justice, and public assistance programs in the United States submitted data to the ASI-MV database (n = 538). Six indicators of the latent classes derived from responses to the ASI-MV, a version of the ASI modified to collect prescription opioid abuse and chronic pain experience. The latent class analysis included respondent home ZIP code random effects to account for nesting of respondents within ZIP code.ResultsA four-class adjusted latent class model fit best and defined clinically interpretable and relevant subgroups: Use as prescribed, Prescribed misusers, Medically healthy abusers, and Illicit users. Classes varied on key variables, including race/ethnicity, gender, concurrent substance abuse, duration of prescription opioid abuse, mental health problems, and ASI composite scores. Three of the four classes (81% of respondents) exhibited high potential risk for fatal opioid overdose; 18.4% exhibited risk factors for blood-borne infections.ConclusionsMultiple and distinct profiles of prescription opioid use were detected, suggesting a range of use typologies at differing risk for adverse events. Results may help clinicians and policy makers better focus overdose and blood-borne infection prevention efforts and intervention strategies for prescription opioid abuse reduction.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.