• J. Neurosci. Res. · Feb 2010

    NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington's disease in rats: protective role of apocynin.

    • P D Maldonado, E Molina-Jijón, J Villeda-Hernández, S Galván-Arzate, A Santamaría, and J Pedraza-Chaverrí.
    • Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México DF, México.
    • J. Neurosci. Res. 2010 Feb 15;88(3):620-9.

    AbstractIntrastriatal injection of quinolinic acid (QUIN) to rodents reproduces some biochemical, morphological, and behavioral characteristics of Huntington's disease. NAD(P)H oxidase is an enzymatic complex that catalyzes superoxide anion (O(2).(-)) production from O(2) and NADPH. The present study evaluated the role of NAD(P)H oxidase in the striatal damage induced by QUIN (240 nmol/microl) in adult male Wistar rats by means of apocynin (APO; 5 mg/kg i.p.), a specific NAD(P)H oxidase inhibitor. Rats were given APO 30 min before and 1 hr after QUIN injection or only 30 min after QUIN injection. NAD(P)H oxidase activity was measured in striatal homogenates by O2(*)(-) production. QUIN infusion to rats significantly increased striatal NAD(P)H oxidase activity (2 hr postlesion), whereas APO treatments decreased the QUIN-induced enzyme activity (2 hr postlesion), lipid peroxidation (3 hr postlesion), circling behavior (6 days postlesion), and histological damage (7 days postlesion). The addition of NADH to striatal homogenates increased NAD(P)H oxidase activity in striata from QUIN-treated animals but not from sham rats. Interestingly, O2(*)(-) production in QUIN-lesioned striata was unaffected by the addition of substrates for intramitochondrial O2(*)(-) production, xanthine oxidase and nitric oxide synthase, suggesting that NAD(P)H oxidase may be the main source of O2(*)(-) in QUIN-treated rats. Moreover, the administration of MK-801 to rats as a pretreatment resulted in a complete prevention of the QUIN-induced NAD(P)H activation, suggesting that this toxic event is completely dependent on N-methyl-D-aspartate receptor overactivation. Our results also suggest that NAD(P)H oxidase is involved in the pathogenic events linked to excitotoxic/prooxidant conditions.Copyright 2009 Wiley-Liss, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.