• Neurol. Med. Chir. (Tokyo) · Jan 2000

    Changes in local cerebral blood flow, glucose utilization, and mitochondrial function following traumatic brain injury in rats.

    • X B Jiang, K Ohno, L Qian, B Tominaga, T Kuroiwa, T Nariai, and K Hirakawa.
    • Department of Neurosurgery, Tokyo Medical and Dental University.
    • Neurol. Med. Chir. (Tokyo). 2000 Jan 1;40(1):16-28; discussion 28-9.

    AbstractThe pathophysiology of secondary brain damage following experimental traumatic brain injury was investigated by measuring local cerebral blood flow (lCBF), local cerebral glucose utilization (lCGU), and activity of succinate dehydrogenase (SDH), which is a mitochondrial enzyme of the tricarboxylic acid cycle, in the rat brain after moderate lateral fluid percussion injury. Measurements used autoradiography for lCBF and lCGU with [14C]iodoantipyrine and [14C]2-deoxyglucose, respectively. Regional SDH activity was determined using quantitative imaging of formazan produced from 2,3,5-triphenyl tetrazolium chloride by SDH. lCBF decreased at 1 hour after injury and was significantly lower than the preinjury level in almost all regions of both hemispheres at 6 and 24 hours, and remained low at 2 weeks. lCGU increased 1 hour after injury but was significantly decreased at 6 and 24 hours, and at 2 weeks in most regions of both hemispheres. The ipsilateral hemisphere showed a significant decrease in the activity of SDH in the cortices, hippocampus, thalamus, and caudate/putamen, most conspicuously 72 hours after injury, whereas no significant decrease was observed in the contralateral hemisphere at any time. Necrosis in the injured cortex and reduction of the number of neurons in the ipsilateral hippocampus were observed 2 weeks after injury. The present study showed that a decrease in lCBF and mitochondrial dysfunction occur with glucose hypermetabolism around 1 hour after lateral fluid percussion injury, and that lCBF, lCGU, and mitochondrial function all deteriorate after 6 hours. This suggests that lCBF and cellular metabolism may change dynamically during the several hours following traumatic brain injury, and afterwards neuronal damage may result in an irreversible change in the areas with depressed glucose hypermetabolism in the early period after injury in combination with mitochondrial dysfunction.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.