• Journal of cell science · Nov 2013

    Functional expression of the voltage-gated Na⁺-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells.

    • Thomas M Campbell, Martin J Main, and Elizabeth M Fitzgerald.
    • Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
    • J. Cell. Sci. 2013 Nov 1;126(Pt 21):4939-49.

    AbstractVarious ion channels are expressed in human cancers where they are intimately involved in proliferation, angiogenesis, invasion and metastasis. Expression of functional voltage-gated Na(+) channels (Nav) is implicated in the metastatic potential of breast, prostate, lung and colon cancer cells. However, the cellular mechanisms that regulate Nav expression in cancer remain largely unknown. Growth factors are attractive candidates; they not only play crucial roles in cancer progression but are also key regulators of ion channel expression and activity in non-cancerous cells. Here, we examine the role of epidermal growth factor receptor (EGFR) signalling and Nav in non-small cell lung carcinoma (NSCLC) cell lines. We show unequivocally, that functional expression of the α subunit Nav1.7 promotes invasion in H460 NSCLC cells. Inhibition of Nav1.7 activity (using tetrodotoxin) or expression (by using small interfering RNA), reduces H460 cell invasion by up to 50%. Crucially, non-invasive wild type A549 cells lack functional Nav, whereas exogenous overexpression of the Nav1.7 α subunit is sufficient to promote TTX-sensitive invasion of these cells. EGF/EGFR signalling enhances proliferation, migration and invasion of H460 cells but we find that, specifically, EGFR-mediated upregulation of Nav1.7 is necessary for invasive behaviour in these cells. Examination of Nav1.7 expression at mRNA, protein and functional levels further reveals that EGF/EGFR signalling via the ERK1/2 pathway controls transcriptional regulation of channel expression to promote cellular invasion. Immunohistochemistry of patient biopsies confirms the clinical relevance of Nav1.7 expression in NSCLC. Thus, Nav1.7 has significant potential as a new target for therapeutic intervention and/or as a diagnostic or prognostic marker in NSCLC.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.