• Zhonghua Shao Shang Za Zhi · Dec 2013

    [Effects of microporous porcine acellular dermal matrix combined with bone marrow mesenchymal cells of rats on the regeneration of cutaneous appendages cells in nude mice].

    • Xu Luo, Guo-hua Xin, Tao-fang Zeng, Cai Lin, Yuan-lin Zeng, Yu-cong Li, and Ze-liang Qiu.
    • Center of Wounds and Burns of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
    • Zhonghua Shao Shang Za Zhi. 2013 Dec 1;29(6):541-7.

    ObjectiveTo observe the effects of microporous porcine acellular dermal matrix (ADM) combined with bone marrow mesenchymal cells (BMMCs) population containing bone mesenchymal stem cells (BMSCs) of rats on the regeneration of cutaneous appendages cells in nude mice.MethodsSplit-thickness dermal grafts, 20 cm×10 cm in size and 0.3 mm in thickness, were prepared from a healthy pig which was sacrificed under sanitary condition. Laser microporous porcine ADM (LPADM) was produced by laser punching, hypertonic saline solution acellular method, and crosslinking treatment, and nonporous porcine ADM (NPADM) was produced by the latter two procedures. Then the appearance observation, histological examination and scanning electron microscope observation were conducted. BMMCs were isolated and cultured from tibia and femur after sacrifice of an SD rat. Osteogenic and adipogenic differentiation experiments were conducted among the adherent cells in the third passage. Then they were inoculated to LPADM and NPADM to construct BMMCs-LPADM and BMMCs-NPADM materials. Twenty-one healthy nude mice were divided into BMMCs-LPADM+NPADM group (A, n = 6), LPADM+split-thickness skin graft group (B, n = 6), BMMCs-LPADM+split-thickness skin graft group (C, n = 6), BMMCs-NPADM+split-thickness skin graft group (D, n= 3) according to randomized block. After anesthesia, a 2 cm×2 cm full-thickness skin defect reaching deep fascia was reproduced in the middle of the back of each nude mouse, and a split-thickness skin graft of the same size was obtained, and then prepared skin grafts were transplanted to cover the wounds respectively. On post transplantation day (PTD) 5, 7, and 14, local condition and adverse effects observation was conducted; one nude mouse was sacrificed each time to harvest all the transplant for tissue structure observation with HE staining. On PTD 7 and 14, neonatal skin appendages in corresponding composite materials were observed with transmission electron microscope.Results(1) LPADM and NPADM appeared to be porcelain white, soft, and flexible. No cellular component was observed in acellular dermal matrix. Scanning electron microscope showed that the collagen fibers were orderly arranged. LPADM had microporous structure. (2) Cells in the third passage were orderly arranged with the shape similar to fibroblasts with high growth speed. (3) Induced differentiation experiments showed that cells could differentiate into osteoblasts and adipocytes. (4) On PTD 5, the NPADM in group A was dry in part; skin grafts in group D were dry and necrotic, and there was no infection and inflammation in groups A and D; skin grafts in groups B and C survived. On PTD 7 and 14, the overlaying material in group A was black, dry, and hard in part; the skin grafts in group D turned to be completely black, dry, and necrotic, and pale yellow clear exudate was found in subcutaneous area; there was no obvious purulent discharge in groups A and D; the appearance of skin grafts in groups B and C was close to the surrounding skin. (5) On PTD 5 and 7, in groups A, B, and C, vascularization was apparent in the pores of dermal matrix, and red blood cells could be found. In group D, skin grafts were dry and necrotic. On PTD 14, in groups A, B, and C, the pore structure of dermal matrix was fully vascularized in which a large number of red blood cells were visible. In group A, the microporous dermal matrix survived, but the overlaying NPADM was not attached closely. In groups B and C, the skin grafts were closely connected to the dermal matrix, and no cutaneous appendages were observed. In group C, special monolayer cells were found at the junction between skin graft and dermal matrix. (6) Skin grafts in group D failed to survive; they were not observed with the electron microscope. On PTD 7, there were no significant differences among groups A, B, and C. On PTD 14, no sebaceous gland-like cell or sweat gland-like cell and no newborn nerve ending were observed in skin grafts in groups A and B, in spite of the immigration of fibroblasts. In group C, a large number of new capillaries were observed at the junction between the skin graft and dermal matrix; rough endoplasmic reticulum of fibroblasts proliferated exuberantly; newborn unmyelinated nerve endings were observed; single free sweat gland-like cells and sebaceous gland-like cells were observed in superficial dermal matrix.ConclusionsLPADM, which provides a "cell niche-like" micro-environment for the migration and differentiation of the BMMCs population, when combining with the split-thickness skin graft, can induce exogenous differentiation of BMSCs in vivo, thus achieving the reconstruction of skin appendages.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.