• Anesthesia and analgesia · May 2016

    Comparative Study

    The Effect of Extracellular Calcium on Oxytocin-Induced Contractility in Naive and Oxytocin-Pretreated Human Myometrium In Vitro.

    • Chiraag Talati, Nivetha Ramachandran, Jose C A Carvalho, John Kingdom, and Mrinalini Balki.
    • From the *Department of Anesthesia and Pain Management, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; and †Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
    • Anesth. Analg. 2016 May 1; 122 (5): 1498-507.

    BackgroundProlonged exposure to oxytocin during augmentation of labor is a significant risk factor for uterine atony, resulting in the desensitization phenomenon, a decrease in the responsiveness of myometrium to further oxytocin. The importance of extracellular calcium is well established in spontaneous myometrial contractility; however, its significance is unknown in the context of desensitized myometrium. We aimed to investigate the effect of low, normal, and high extracellular calcium concentration on oxytocin-induced contractility in oxytocin-pretreated human myometrium in vitro. We hypothesized that extracellular normocalcemia would provide superior oxytocin-induced contractility in both naive and oxytocin-pretreated myometrium compared with hypocalcemia and hypercalcemia.MethodsMyometrial tissue was obtained from women undergoing elective cesarean deliveries and was dissected into longitudinal strips. Each strip was mounted in a single organ bath with physiological salt solution (PSS) under homeostatic conditions and then pretreated for 2 hours with either oxytocin 10 M or PSS (control). The tissue was then washed with PSS, and calcium concentrations were altered to reflect low (1.25 mM), normal (2.5 mM), or high (3.75 mM) levels, thereby providing 6 study groups. After equilibration in the desired calcium concentration, a dose-response testing to oxytocin 10 M to 10 M was performed. Contractile parameters were measured and compared among groups after square root transformation. The primary outcome was motility index (frequency × amplitude), and secondary outcomes included frequency, amplitude, and area under the curve.ResultsOne hundred seventy-four experiments were conducted from samples obtained from 36 women. In the control group, the mean motility index (√g·contractions/10 min) was significantly lower in the hypocalcemic group than in the normocalcemic group (estimated difference, -0.43; 95% confidence interval [CI], -0.82 to -0.04; P = 0.03). In addition, the mean frequency of contractions (√contractions/10 min) was significantly lower in the hypocalcemic (estimated difference, -0.27; 95% CI, -0.46 to -0.09; P = 0.002) and hypercalcemic groups (estimated difference, -0.18; 95% CI, -0.34 to -0.02; P = 0.03) compared with the normocalcemic group. In the oxytocin-pretreated group, there were no significant differences in the values of any of the contractility parameters of the hypocalcemic or hypercalcemic groups compared with the normocalcemic group (mean motility index [√g·contractions/10 min] estimated difference, 0.10; 95% CI, -0.23 to 0.43; P = 0.74 and -0.39; 95% CI, -1.10 to 0.32; P = 0.39, respectively).ConclusionsIn oxytocin-naive myometrium, normocalcemia provides superior oxytocin-induced contractility compared with hypocalcemic and hypercalcemic conditions. We were unable to draw conclusions regarding oxytocin-pretreated myometrium because of the small sample size relative to the large variability of the data. These observations warrant further investigations in laboratory and clinical settings.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…