• Croatian medical journal · Feb 2007

    Review

    Role of decreased sensory neuron membrane calcium currents in the genesis of neuropathic pain.

    • Quinn H Hogan.
    • Department of Anesthesiology, Medical College of Wisconsin, Room M4280, 8701 Watertown Plank Rd, Milwaukee, WI, USA. qhogan@mcw.edu
    • Croat. Med. J. 2007 Feb 1;48(1):9-21.

    AbstractThe pathogenesis of neuropathic pain is incompletely understood and treatments are often inadequate. Cytoplasmic Ca(2+) regulates numerous cellular processes in neurons. This review therefore examines the pathogenic contribution of altered inward Ca(2+) flux (I(Ca)) through voltage-gated Ca(2+) channels in sensory neurons after peripheral nerve injury. We reviewed studies that recorded membrane currents through intracellular and patch-clamp techniques, as well as intracellular Ca(2+) levels using fluorimetric indicators, and performed behavioral analysis of rodent nerve injury models. Following nerve injury by partial ligation, a response characterized by sustained lifting, shaking, and licking of the paw after sharp mechanical stimulation is a reliable indicator or neuropathic pain. Primary sensory neurons isolated from animals with this behavior show a decrease in high-voltage activated I(Ca) by approximately one third. Low voltage-activated I(Ca) is nearly eliminated by peripheral nerve injury. Loss of I(Ca) leads to decreased activation of Ca(2+)-activated K(+) currents, which are also directly reduced in traumatized neurons. As a result of these changes in membrane currents, membrane voltage recordings show increased action potential duration and diminished afterhyperpolarization. Excitability is elevated, as indicated by resting membrane potential depolarization and a decreased current threshold for action potential initiation. Traumatized nociceptive neurons develop increased repetitive firing during sustained depolarization after axotomy. Concurrently, cytoplasmic Ca(2+) transients are diminished. In conclusions, axotomized neurons, especially pain-conducting ones, develop instability and elevated excitability after peripheral injury. Treatment of neuronal I(Ca) loss at the level of injury of the dorsal root ganglion may provide a novel therapeutic pathway.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.