-
Comparative Study
Development of a model for prediction of survival in pediatric trauma patients: comparison of artificial neural networks and logistic regression.
- Stephen M DiRusso, A Alfred Chahine, Thomas Sullivan, Donald Risucci, Peter Nealon, Sara Cuff, John Savino, and Michel Slim.
- Department of Surgery, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.
- J. Pediatr. Surg. 2002 Jul 1;37(7):1098-104; discussion 1098-104.
Background/PurposeThere is a paucity of outcome prediction models for injured children. Using the National Pediatric Trauma Registry (NPTR), the authors developed an artificial neural network (ANN) to predict pediatric trauma death and compared it with logistic regression (LR).MethodsPatients in the NPTR from 1996 through 1999 were included. Models were generated using LR and ANN. A data search engine was used to generate the ANN with the best fit for the data. Input variables included anatomic and physiologic characteristics. There was a single output variable: probability of death. Assessment of the models was for both discrimination (ROC area under the curve) and calibration (Lemeshow-Hosmer C-Statistic).ResultsThere were 35,385 patients. The average age was 8.1 +/- 5.1 years, and there were 1,047 deaths (3.0%). Both modeling systems gave excellent discrimination (ROC A(z): LR = 0.964, ANN = 0.961). However, LR had only fair calibration, whereas the ANN model had excellent calibration (L/H C stat: LR = 36, ANN = 10.5).ConclusionsThe authors were able to develop an ANN model for the prediction of pediatric trauma death, which yielded excellent discrimination and calibration exceeding that of logistic regression. This model can be used by trauma centers to benchmark their performance in treating the pediatric trauma population.Copyright 2002, Elsevier Science (USA). All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.