• Spine · Jul 2006

    Comparative Study

    The effects of rod contouring on spinal construct fatigue strength.

    • Colleen Lindsey, Vedat Deviren, Zheng Xu, Ru-Fang Yeh, and Christian M Puttlitz.
    • Department of Orthopaedic Surgery, University of California, Berkeley, CA, USA.
    • Spine. 2006 Jul 1;31(15):1680-7.

    Study DesignIn vitro fatigue loading using a corpectomy model outfitted with posterior pedicle screw instrumentation.ObjectiveThe purpose of this study was to detect differences in fatigue resistance of titanium and stainless steel spinal constructs that use rods contoured using a French Bender, and to compare differences in fatigue resistance of contoured and straight titanium rods.Summary Of Background DataInstrumentation failure is generally thought to be caused by fatigue or cyclic loading. Intraoperative contouring of the posterior rods is almost always required to match the native kyphotic (thoracic) or lordotic (cervical or lumbar) spinal curvature. How bending these rods affects their overall fatigue resistance is not well described. In addition, changes in fatigue resistance may be a function of material type.MethodsSpinal constructs were evaluated using the ASTM F1717-01 model. Two different titanium-based rods (Ti6AL4V and CpTi) and two different steel-based rods (Orthinox and 316L stainless steel) were evaluated in this study (n = 6 for each group). Rods were contoured at two points using a French Bender and were rigidly coupled to polyaxial pedicle screws within UHMWPE vertebral bodies. Constructs were cycled at a load ratio of 10 between a minimum and maximum loading regime of -250 N/-25 N and -700 N/-70 N at a frequency of 4 Hz. Estimated maximum nominal stresses at various points of interest in the spinal constructs were calculated using beam theory. Effects of the rod material, load, and stress on the number of cycles to failure were analyzed using Cox proportional hazards regression.ResultsAll of the spinal constructs with contoured CpTi rods and contoured Ti6Al4V rods failed at one of the bends in the rods. Almost all of the spinal constructs with straight CpTi rods and straight Ti6Al4V rods failed where the blocker screw fastens the rod to the coupler of the polyaxial screw head. Contoured titanium constructs demonstrated significantly lower fatigue life than contoured 316L constructs. Contouring tended to lower the fatigue life of both the Ti6Al4V and CpTi constructs.ConclusionIntraoperative rod contouring using a French Bender significantly reduces the fatigue life of titanium spinal constructs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…