-
Review
Development of prognostic models for patients with traumatic brain injury: a systematic review.
- Jinxi Gao and Zhaocong Zheng.
- Department of Neurosurgery, Fuzhou General Hospital Fuzhou 350025, China.
- Int J Clin Exp Med. 2015 Jan 1;8(11):19881-5.
AbstractOutcome prediction following traumatic brain injury (TBI) is a widely investigated field of research. Several outcome prediction models have been developed for prognosis after TBI. There are two main prognostic models: International Mission for Prognosis and Clinical Trials in Traumatic Brain Injury (IMPACT) prognosis calculator and the Corticosteroid Randomization after Significant Head Injury (CRASH) prognosis calculator. The prognosis model has three or four levels: (1) model A included age, motor GCS, and pupil reactivity; (2) model B included predictors from model A with CT characteristics; and (3) model C included predictors from model B with laboratory parameters. In consideration of the fact that interventions after admission, such as ICP management also have prognostic value for outcome predictions and may improve the models' performance, Yuan F et al developed another prediction model (model D) which includes ICP. With the development of molecular biology, a handful of brain injury biomarkers were reported that may improve the predictive power of prognostic models, including neuron-specific enolase (NSE), glial fibrillary acid protein (GFAP), S-100β protein, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), myelin basic protein (MBP), cleaved tau protein (C-tau), spectrin breakdown products (SBDPs), and ubiquitin C-terminal hydrolase-L1 (UCH-L1), and sex hormones. A total of 40 manuscripts reporting 11 biomarkers were identified in the literature. Many substances have been implicated as potential biomarkers for TBI; however, no single biomarker has shown the necessary sensitivity and specificity for predicting outcome. The limited number of publications in this field underscores the need for further investigation. Through fluid biomarker analysis, the advent of multi-analyte profiling technology has enabled substantial advances in the diagnosis and treatment of a variety of conditions. Application of this technology to create a bio-signature for TBI using multiple biomarkers in combination will hopefully facilitate much-needed advances. We believe that further investigations about brain injury biomarkers may improve the predictive power of the contemporary outcome calculators and prognostic models, and eventually improve the care of patients with TBI.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.