• Journal of neurosurgery · Feb 2004

    Randomized Controlled Trial Clinical Trial

    Rapid and selective cerebral hypothermia achieved using a cooling helmet.

    • Huan Wang, William Olivero, Giuseppe Lanzino, William Elkins, Jean Rose, Debra Honings, Mary Rodde, Jan Burnham, and David Wang.
    • Illinois Neurological Institute, St. Francis Medical Center, University of Illinois College of Medicine at Peoria, Illinois 61656, USA.
    • J. Neurosurg. 2004 Feb 1;100(2):272-7.

    ObjectHypothermia is by far the most potent neuroprotectant. Nevertheless, timely and safe delivery of hypothermia remains a clinical challenge. To maximize neuroprotection yet minimize systemic complications, ultra-early delivery of selective cerebral hypothermia by Emergency Medical Service (EMS) personnel in the field would be advantageous. The authors (W.E. and H.W.) have developed a cooling helmet by using National Aeronautics and Space Administration spinoff technology. In this study its effectiveness in lowering brain temperature in patients with severe stroke or head injury is examined.MethodsPatients were randomly assigned to groups receiving either the cooling helmet or no cooling, and brain temperatures (0.8 cm below the cortical surface) were continuously monitored for a mean of 48 to 72 hours with a Neurotrend sensor and then compared with the patients' core temperatures. There were eight patients in the study group and six in the control group. The mean change in temperature (brain-body temperature) calculated from 277 data hours in the study group was -1.6 degrees C compared with a mean change in temperature of +0.22 degrees C calculated from 309 data hours in the control group. This was statistically significant (p < 0.0001). On average, 1.84 degrees C of brain temperature reduction (range 0.9-2.4 degrees C) was observed within 1 hour of helmet application. It took a mean of 3.4 hours (range 2-6 hours) to achieve a brain temperature lower than 34 degrees C and 6.67 hours (range 1-12 hours) before systemic hypothermia (< 36 degrees C) occurred. Use of the helmet resulted in no significant complications. There was, however, one episode of asymptomatic bradycardia (heart rate < 40) that responded to a 0.5 degrees C body temperature increase.ConclusionsThis helmet delivers initial rapid and selective brain cooling and maintains a significant temperature gradient between the core and brain temperatures throughout the hypothermic period to provide sufficient regional hypothermia yet minimize systemic complications. It results in delayed systemic hypothermia, creating a safe window for possible ultra-early delivery of regional hypothermia by EMS personnel in the field.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…