• J Neurosurg Spine · Sep 2013

    Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model.

    • Bryan W Cunningham, Nadim J Hallab, Nianbin Hu, and Paul C McAfee.
    • Orthopaedic Spinal Research Institute, University of Maryland St. Joseph Medical Center, Towson, USA. bcspine@gmail.com
    • J Neurosurg Spine. 2013 Sep 1;19(3):336-50.

    ObjectThe introduction and utilization of motion-preserving implant systems for spinal reconstruction served as the impetus for this basic scientific investigation. The effect of unintended wear particulate debris resulting from micromotion at spinal implant interconnections and bearing surfaces remains a clinical concern. Using an in vivo rabbit model, the current study quantified the neural and systemic histopathological responses following epidural application of 11 different types of medical-grade particulate wear debris produced from spinal instrumentation.MethodsA total of 120 New Zealand White rabbits were equally randomized into 12 groups based on implant treatment: 1) sham (control), 2) stainless steel, 3) titanium alloy, 4) cobalt chromium alloy, 5) ultra-high molecular weight polyethylene (UHMWPe), 6) ceramic, 7) polytetrafluoroethylene, 8) polycarbonate urethane, 9) silicone, 10) polyethylene terephthalate, 11) polyester, and 12) polyetheretherketone. The surgical procedure consisted of a midline posterior approach followed by resection of the L-6 spinous process and L5-6 ligamentum flavum, permitting interlaminar exposure of the dural sac. Four milligrams of the appropriate treatment material (Groups 2-12) was then implanted onto the dura in a dry, sterile format. All particles (average size range 0.1-50 μm in diameter) were verified to be endotoxin free prior to implantation. Five animals from each treatment group were sacrificed at 3 months and 5 were sacrificed at 6 months postoperatively. Postmortem analysis included epidural cultures and histopathological assessment of local and systemic tissue samples. Immunocytochemical analysis of the spinal cord and overlying epidural fibrosis quantified the extent of proinflammatory cytokines (tumor necrosis factor-α, tumor necrosis factor-β, interleukin [IL]-1α, IL-1β, and IL-6) and activated macrophages.ResultsEpidural cultures were negative for nearly all cases, and there was no evidence of particulate debris or significant histopathological changes in the systemic tissues. Gross histopathological examination demonstrated increased levels of epidural fibrosis in the experimental treatment groups compared with the control group. Histopathological evaluation of the epidural fibrous tissues showed evidence of a histiocytic reaction containing phagocytized inert particles and foci of local inflammatory reactions. At 3 months, immunohistochemical examination of the spinal cord and epidural tissues demonstrated upregulation of IL-6 in the groups in which metallic and UHMWPe debris were implanted (p < 0.05), while macrophage activity levels were greatest in the stainless-steel and UHMWPe groups (p < 0.05). By 6 months, the levels of activated cytokines and macrophages in nearly all experimental cases were downregulated and not significantly different from those of the operative controls (p > 0.05). The spinal cord had no evidence of lesions or neuropathology. However, multiple treatments in the metallic groups exhibited a mild, chronic macrophage response to particulate debris, which had diffused intrathecally.ConclusionsEpidural application of spinal instrumentation particulate wear debris elicits a chronic histiocytic reaction localized primarily within the epidural fibrosis. Particles have the capacity to diffuse intrathecally, eliciting a transient upregulation in macrophage/cytokine activity response within the epidural fibrosis. Overall, based on the time periods evaluated, there was no evidence of an acute neural or systemic histopathological response to the materials included in the current project.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.