• Spine · Aug 2016

    Vibration Really Does Disrupt the Disc-A Microanatomical Investigation.

    • Kelly R Wade, Meredith L Schollum, Peter A Robertson, Ashvin Thambyah, and Neil D Broom.
    • *Experimental Tissue Mechanics Laboratory, Department of Chemical and Materials Engineering, University of Auckland, New Zealand †Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand.
    • Spine. 2016 Aug 1; 41 (15): 1185-98.

    Study DesignMicrostructural investigation of vibration-induced disruption of the flexed lumbar disc.ObjectiveThe aim of the study was to explore micro-level structural damage in motion segments subjected to vibration at subcritical peak loads.Summary Of Background DataEpidemiological evidence suggests that cumulative whole body vibration may damage the disc and thus play an important role in low back pain. In vitro investigations have produced herniations via cyclic loading (and cyclic with added vibrations as an exacerbating exposure), but offered only limited microstructural analysis.MethodsTwenty-nine healthy mature ovine lumbar motion segments flexed 7° and subjected to vibration loading (1300 ± 500 N) in a sinusoidal waveform at 5 Hz to simulate moderately severe physiologic exposure. Discs were tested either in the range of 20,000 to 48,000 cycles (medium dose) or 70,000 to 120,000 cycles (high dose). Damaged discs were analyzed microstructurally.ResultsThere was no large drop in displacement over the duration of both vibration doses indicating an absence of catastrophic failure in all tests. The tested discs experienced internal damage that included delamination and disruption to the inner and mid-annular layers as well as diffuse tracking of nucleus material, and involved both the posterior and anterior regions. Less frequent tearing between the inner disc and endplate was also observed. Annular distortions also progressed into a more severe form of damage, which included intralamellar tearing and buckling and obvious strain distortion around the bridging elements within the annular wall.ConclusionVibration loading causes delamination and disruption of the inner and mid-annular layers and limited diffuse tracking of nucleus material. These subtle levels of disruption could play a significant role in initiating the degenerative cascade via micro-level disruption leading to cell death and altered nutrient pathways.Level Of Evidence5.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.