-
- A Avogaro, G Toffolo, M Miola, A Valerio, A Tiengo, C Cobelli, and S Del Prato.
- Cattedra di Malattie del Metabolismo, School of Medicine, University of Padova, Italy.
- J. Clin. Invest. 1996 Jul 1;98(1):108-15.
AbstractThe contribution of muscle tissues of non-insulin-dependent diabetes mellitus (NIDDM) patients to blood lactate appearance remains undefined. To gain insight on intracellular pyruvate/lactate metabolism, the postabsorptive forearm metabolism of glucose, lactate, FFA, and ketone bodies (KB) was assessed in seven obese non-insulin-dependent diabetic patients (BMI = 28.0 +/- 0.5 kg/m2) and seven control individuals (BMI = 24.8 +/- 0.5 kg/m2) by using arteriovenous balance across forearm tissues along with continuous infusion of [3-13C1]-lactate and indirect calorimetry. Fasting plasma concentrations of glucose (10.0 +/- 0.3 vs. 4.7 +/- 0.2 mmol/liter), insulin (68 +/- 5 vs. 43 +/- 6 pmol/liter), FFA (0.57 +/- 0.02 vs. 0.51 +/- 0.02 mmol/liter), and blood levels of lactate (1.05 +/- 0.04 vs. 0.60 +/- 0.06 mmol/liter), and KB (0.48 +/- 0.04 vs. 0.29 +/- 0.02 mmol/liter) were higher in NIDDM patients (P < 0.01). Forearm glucose uptake was similar in the two groups (10.3 +/- 1.4 vs. 9.6 +/ 1.1 micromol/min/liter of forearm tissue), while KB uptake was twice as much in NIDDM patients as compared to control subjects. Lactate balance was only slightly increased in NIDDM patients (5.6 +/- 1.4 vs. 3.3 +/- 1.0 micromol/min/liter; P = NS). A two-compartment model of lactate and pyruvate kinetics in the forearm tissue was used to dissect out the rates of lactate to pyruvate and pyruvate to lactate interconversions. In spite of minor differences in the lactate balance, a fourfold increase in both lactate- (44.8 +/- 9.0 vs. 12.6 +/- 4.6 micromol/min/liter) and pyruvate-(50.4 +/- 9.8 vs. 16.0 +/- 5.0 micromol/min/liter) interconversion rates (both P < 0.01) were found. Whole body lactate turnover, assessed by using the classic isotope dilution principle, was higher in NIDDM individuals (46 +/- 9 vs. 21 +/- 3 micromol/min/kg; P < 0.01). Insights into the physiological meaning of this parameter were obtained by using a whole body noncompartmental model of lactate/pyruvate kinetics which provides a lower and upper bound for total lactate and pyruvate turnover (NIDDM = 46 +/- 9 vs. 108 +/- 31; controls = 21 +/- 3 - 50 +/-13 micromol/min/kg). In conclusion, in the postabsorptive state, despite a trivial lactate release by muscle, lactate- and pyruvate-interconversion rates are greatly enhanced in NIDDM patients, possibly due to concomitant impairment in the oxidative pathway of glucose metabolism. This finding strongly suggest a major disturbance in intracellular lactate/pyruvate metabolism in NIDDM.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.