• J. Neuropathol. Exp. Neurol. · Mar 2003

    Comparative Study

    Insulin deficiency rather than hyperglycemia accounts for impaired neurotrophic responses and nerve fiber regeneration in type 1 diabetic neuropathy.

    • Christopher R Pierson, Weixian Zhang, Yuichi Murakawa, and Anders A F Sima.
    • Department of Pathology, Morris Hood Jr. Comprehensive Diabetes Center, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
    • J. Neuropathol. Exp. Neurol. 2003 Mar 1;62(3):260-71.

    AbstractDiabetic polyneuropathy (DPN) shows more severe functional and structural changes in type 1 than in type 2 human and experimental diabetes. We have previously suggested that these differences may be due to insulin and/or C-peptide deficiencies in type 1 diabetes. To further explore these differences between type I and type 2 DPN, we examined factors underlying nerve fiber regeneration in the hyperinsulinemic type 2 BB/Z-rat and compared these with previous data obtained from the iso-hyperglycemic, insulin and C-peptide-deficient type 1 diabetic BB/Wor-rat. The expression of neurotrophic factors and cytoskeletal proteins were studied in L4 and L5 dorsal root ganglia (DRG) at various time points after sciatic nerve crush. The data were compared to those of nondiabetes-prone BB-rats. Insulin-like growth factor 1 (IGF-1) and TrkA levels were lower in DRG from type 1 than from those of type 2 and control BB-rats. On the other hand, IGF-1 receptor expression was increased at baseline in type 1 BB/Wor-rats and decreased after crush injury, whereas its expression increased after crush injury in both control and type 2 BB/Z-rats. Following crush injury, betaII- and betaIII-tubulins were upregulated in type 2 BB/Z and control rats, which did not occur in type 1 BB/Wor-rats. Furthermore, type 2 BB/Z-rats showed the normal downregulation of low and medium molecular neurofilament (NF-L and NF-M, respectively), which did not occur in type 1 BB/Wor-rats. These findings were associated with significantly milder abnormalities in axonal elongation and caliber growth of regenerating fibers in type 2 compared to type 1 diabetic rats. These data suggest that impaired insulin signaling in type 1 diabetic nerve may be of greater significance in the regulation of neurotrophic and neurocytoskeletal protein synthesis than hyperglycemia in explaining the differences in nerve fiber regeneration between type 2 and type 1 diabetes.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…