• Osteoarthr. Cartil. · Oct 2007

    Transcriptional profiling and pathway analysis of monosodium iodoacetate-induced experimental osteoarthritis in rats: relevance to human disease.

    • R A Barve, J C Minnerly, D J Weiss, D M Meyer, D J Aguiar, P M Sullivan, S L Weinrich, and R D Head.
    • Molecular Pharmacology Group, Pfizer Global Research and Development, St. Louis, MO, USA.
    • Osteoarthr. Cartil. 2007 Oct 1;15(10):1190-8.

    ObjectiveThe objective of this study was to characterize the rat monosodium iodoacetate (MIA)-induced model for osteoarthritis (OA) and determine the translatability of this model to human disease. This was accomplished through pathway, network and system level comparisons of transcriptional profiles generated from animal and human disease cartilage.MethodsAn OA phenotype was induced in rat femorotibial joints following a single injection of 200mug MIA per knee joint for a period of 2 or 4 weeks. Lesion formation in the rat joints was confirmed by histology. Gene expression changes were measured using the Agilent rat whole genome microarrays. Cartilage was harvested from human knees and gene expression changes were measured using the Agilent human arrays.ResultsOne thousand nine hundred and forty-three oligos were differentially expressed in the MIA model, of these, approximately two-thirds were up-regulated. In contrast, of the 2130 differentially expressed oligos in human disease tissue, approximately two-thirds were down-regulated. This dramatic difference was observed throughout each level of the comparison. The total overlap of genes modulated in the same direction between rat and human was less than 4%. Matrix degradation and inflammatory genes were differentially regulated to a much greater extent in MIA than human disease tissue.ConclusionThis study demonstrated, through multiple levels of analysis, that little transcriptional similarity exists between rat MIA and human OA derived cartilage. As disease modulatory activities for potential therapeutic agents often do not translate from animal models to human disease, this and like studies may provide a basis for understanding the discrepancies.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.