• Radiation research · May 2013

    Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment.

    • Kenneth A Jenrow, Stephen L Brown, Karen Lapanowski, Hoda Naei, Andrew Kolozsvary, and Jae Ho Kim.
    • Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA. kjenrow1@hfhs.org
    • Radiat. Res. 2013 May 1;179(5):549-56.

    AbstractCognitive impairment precipitated by irradiation of normal brain tissue is commonly associated with radiation therapy for treatment of brain cancer, and typically manifests more than 6 months after radiation exposure. The risks of cognitive impairment are of particular concern for an increasing number of long-term cancer survivors. There is presently no effective means of preventing or mitigating this debilitating condition. Neuroinflammation mediated by activated microglial cytokines has been implicated in the pathogenesis of radiation-induced cognitive impairment in animal models, including the disruption of neurogenesis and activity-induced gene expression in the hippocampus. These pathologies evolve rapidly and are associated with relatively subtle cognitive impairment at 2 months postirradiation. However, recent reports suggest that more profound cognitive impairment develops at later post-irradiation time points, perhaps reflecting a gradual loss of responsiveness within the hippocampus by the disruption of neurogenesis. We hypothesized that inhibiting neuroinflammation using MW01-2-151SRM (MW-151), a selective inhibitor of proinflammatory cytokine production, might mitigate these deleterious radiation effects by preserving/restoring hippocampal neurogenesis. MW-151 therapy was initiated 24 h after 10 Gy whole-brain irradiation (WBI) administered as a single fraction and maintained for 28 days thereafter. Proinflammatory activated microglia in the dentate gyrus were assayed at 2 and 9 months post-WBI. Cell proliferation and neurogenesis in the dentate gyrus were assayed at 2 months post-WBI, whereas novel object recognition and long-term potentiation were assayed at 6 and 9 months post-WBI, respectively. MW-151 mitigated radiation-induced neuroinflammation at both early and late time points post-WBI, selectively mitigated the deleterious effects of irradiation on hippocampal neurogenesis, and potently mitigated radiation-induced deficits of novel object recognition consolidation and of long-term potentiation induction and maintenance. Our results suggest that transient administration of MW-151 is sufficient to partially preserve/restore neurogenesis within the subgranular zone and to maintain the functional integrity of the dentate gyrus long after MW-151 therapy withdrawal.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…