• J. Thorac. Cardiovasc. Surg. · Aug 2016

    Edaravone promotes activation of resident cardiac stem cells by transplanted mesenchymal stem cells in a rat myocardial infarction model.

    • Guang-Wei Zhang, Tian-Xiang Gu, Xue-Jun Sun, Chunyue Wang, Xun Qi, Xiao-Bing Wang, and Jesse Li-Ling.
    • Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China.
    • J. Thorac. Cardiovasc. Surg. 2016 Aug 1; 152 (2): 570-82.

    ObjectiveTo explore the effect of edaravone on bone marrow mesenchymal stem cells (BMSCs) transplanted to treat acute myocardial infarction (AMI) and the underlying mechanism.MethodsAfter pretreatment or treatment with edaravone under conditions of deep hypoxia and serum deprivation, the rat BMSCs were evaluated for reactive oxygen species (ROS), Akt pathway, apoptosis, migration, and paracrine function mediating cardiac stem cell (CSC) activation. Edaravone-pretreated BMSCs, control-released edaravone, and BMSCs were respectively transplanted into a rat AMI model. Apoptosis and paracrine functions of the BMSCs, resident CSC activation, and myocardial regeneration and function were measured at various time points.ResultsCompared with the control and edaravone pretreatment, edaravone treatment showed significantly increased apoptosis inhibition, migration, and cytokine secretion of BMSCs under an in vitro deep hypoxia and serum deprivation condition (P < .05), via inhibiting intracellular accumulation of ROS and prolonging the Akt pathway activation. At 24 hours postoperatively, up-regulated expression of cytokines within the transplanted area, and decreased apoptotic BMSCs, were detected in the BMSC + edaravone group, compared with the BMSCs and edaravone pretreatment BMSC groups (n = 10 for each group, P < .05). Four weeks later, the BMSCs + edaravone group showed more CSCs, CSC-derived cardiomyocytes, new vessels, and myocardial density within the ischemic area, and improved ejection fraction, compared with the other groups (n = 10 in each group, P < .05).ConclusionsEdaravone can protect the BMSCs against hypoxia and activate their potential to activate CSCs via the Akt pathway. The combined treatment can promote angiogenesis, resident CSC-mediated myocardial regeneration, and cardiac function after AMI, providing a new strategy for cell therapy.Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.