• Kidney international · Mar 2004

    In vivo transfection of NF-kappaB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats.

    • Chang Chun Cao, Xiao Qiang Ding, Zhou Lou Ou, Chun Feng Liu, Peng Li, Lei Wang, and Chun Fang Zhu.
    • Department of Nephrology, Zhongshan Hospital, Shanghai, China.
    • Kidney Int. 2004 Mar 1;65(3):834-45.

    BackgroundIschemic acute renal failure (ARF) is a common and often fatal condition characterized by tubular epithelial cell necrosis and marked monocyte infiltration. Inflammatory mechanisms, including cell adhesion, cell infiltration, and cytokine production, are involved. These processes are thought to be directly or indirectly regulated by nuclear factor kappaB (NF-kappaB). Targeted of NF-kappaB might ameliorate ischemia/reperfusion (I/R) injury by inhibiting the production of genes that involved in ischemic ARF. The objective of the present study was to evaluate the effect of NF-kappaB decoy oligodeoxynucleotides (ODN) in experimental rat ischemic ARF.MethodsIschemic ARF was induced by left renal artery clamping for 60 minutes, while the right kidney was being removed in female Sprague-Dawley rats. The effect of cationic liposome-protamine-NF-kappaB decoy ODN was evaluated after infusion into the kidney via the renal artery before clamping. After 24 hours of reperfusion, we then assessed morphologic and functional parameters, NF-kappaB/DNA binding activity, monocyte/macrophage (M/MPhi) infiltration, and gene expression in I/R kidney.ResultsAfter 24 hours of reperfusion, compared with sham-operated animals, serum creatinine and blood urea nitrogen (BUN) levels in ischemic ARF animals were increased about 10-fold and fivefold respectively. (255.67 +/- 34.48 micromol/L vs. 25.33 +/- 2.23 micromol/L and 43.47 +/- 5.50 mmol/L vs. 8.45 +/- 0.43 mmol/L, P < 0.001), NF-kappaB/DNA binding activity was markedly elevated [median value was 1.75 vs. 0.15 relative density unit (RDU), P < 0.005]. NF-kappaB decoy ODN treatment reduced the elevation of serum creatinine level by 70% (79.17 +/- 8.64 micromol/L vs. 255.67 +/- 34.48 micromol/L, P < 0.01), BUN level by 40% (28.33 +/- 4.86 mmol/L vs. 43.47 +/- 5.50 mmol/L, P= NS), and almost abolished the NF-kappaB activation compared with levels observed in sham-operated rats (median value was 0.25 vs. 1.9 RDU, P < 0.005). Furthermore, NF-kappaB decoy ODN pretreatment prevented the occurrence of tubular necrosis and reduced the renal tubular damage scores markedly (1.85 +/- 0.06 vs. 3.63 +/- 0.06 scores, P < 0.01). In addition, M/MPhi infiltration was obviously suppressed (9.77 +/- 1.19 cells/hpf vs. 29.22 +/- 1.94 cells/hpf, P < 0.01), Moreover, results of reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry showed the up-regulation of monocyte chemoattractant protein-1 (MCP-1) and intercellular adhesion molecule-1 (ICAM-1) was greatly decreased, inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) expression were also reduced, approaching levels observed in sham-operated animals. The data suggest that NF-kappaB decoy ODN treatment protects renal tissue from the effects of I/R injury and thus reduces the severity of ARF.ConclusionThese experiments demonstrated that NF-kappaB plays a critical role in renal I/R injury by reducing a series of inflammatory genes. NF-kappaB decoy ODN treatment reduces the renal dysfunction and damage associated with ischemic ARF. Therefore, in vivo transfection of NF-kappaB decoy ODN provides a new therapeutic strategy for ischemic ARF.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…