• Critical care medicine · Dec 2014

    Ischemic Preconditioning Protects Against Liver Ischemia/Reperfusion Injury via Heme Oxygenase-1-Mediated Autophagy.

    • Anding Liu, Haoshu Fang, Weiwei Wei, Olaf Dirsch, and Uta Dahmen.
    • 1Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. 2Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital of Jena, Friedrich-Schiller-University Jena, Jena, Germany. 3Department of Pathophysiology, Anhui Medical University, Hefei, China. 4Institute for Pathology, University Hospital of Jena, Friedrich-Schiller-University Jena, Jena, Germany.
    • Crit. Care Med.. 2014 Dec 1;42(12):e762-71.

    ObjectivesIschemic preconditioning exerts a protective effect in hepatic ischemia/reperfusion injury. The exact mechanism of ischemic preconditioning action remains largely unknown. Recent studies suggest that autophagy plays an important role in protecting against ischemia/reperfusion injury. However, the role of autophagy in ischemic preconditioning-afforded protection and its regulatory mechanisms in liver ischemia/reperfusion injury remain poorly understood. This study was designed to determine whether ischemic preconditioning could protect against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy.DesignLaboratory investigation.SettingUniversity animal research laboratory.SubjectsMale inbred Lewis rats and C57BL/6 mice.InterventionsIschemic preconditioning was produced by 10 minutes of ischemia followed by 10 minutes of reperfusion prior to 60 minutes of ischemia. In a rat model of hepatic ischemia/reperfusion injury, rats were pretreated with wortmannin or rapamycin to evaluate the contribution of autophagy to the protective effects of ischemic preconditioning. Heme oxygenase-1 was inhibited with tin protoporphyrin IX. In a mouse model of hepatic ischemia/reperfusion injury, autophagy or heme oxygenase-1 was inhibited with vacuolar protein sorting 34 small interfering RNA or heme oxygenase-1 small interfering RNA, respectively.Measurements And Main ResultsIschemic preconditioning ameliorated liver ischemia/reperfusion injury, as indicated by lower serum aminotransferase levels, lower hepatic inflammatory cytokines, and less severe ischemia/reperfusion-associated histopathologic changes. Ischemic preconditioning treatment induced autophagy activation, as indicated by an increase of LC3-II, degradation of p62, and accumulation of autophagic vacuoles in response to ischemia/reperfusion injury. When ischemic preconditioning-induced autophagy was inhibited with wortmannin in rats or vacuolar protein sorting 34-specific small interfering RNA in mice, liver ischemia/reperfusion injury was worsened, whereas rapamycin treatment increased autophagy and mimicked the protective effects of ischemic preconditioning. Furthermore, ischemic preconditioning increased heme oxygenase-1 expression. The inhibition of heme oxygenase-1 with tin protoporphyrin IX in rats or heme oxygenase-1-specific small interfering RNA in mice decreased ischemic preconditioning-induced autophagy and diminished the protective effects of ischemic preconditioning against ischemia/reperfusion injury.ConclusionsIschemic preconditioning protects against liver ischemia/reperfusion injury, at least in part, via heme oxygenase-1-mediated autophagy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.