• J. Biol. Chem. · Feb 2011

    Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease.

    • Hung-Kai Chen, Zhong-Sheng Ji, Sara E Dodson, Rene D Miranda, Charles I Rosenblum, Ian J Reynolds, Stephen B Freedman, Karl H Weisgraber, Yadong Huang, and Robert W Mahley.
    • Gladstone Center for Translational Research, San Francisco, California 94158, USA.
    • J. Biol. Chem. 2011 Feb 18; 286 (7): 5215-21.

    AbstractApolipoprotein (apo) E4 is the major genetic risk factor for late-onset Alzheimer disease (AD). ApoE4 assumes a pathological conformation through an intramolecular interaction mediated by Arg-61 in the amino-terminal domain and Glu-255 in the carboxyl-terminal domain, referred to as apoE4 domain interaction. Because AD is associated with mitochondrial dysfunction, we examined the effect of apoE4 domain interaction on mitochondrial respiratory function. Steady-state amounts of mitochondrial respiratory complexes were examined in neurons cultured from brain cortices of neuron-specific enolase promoter-driven apoE3 (NSE-apoE3) or apoE4 (NSE-apoE4) transgenic mice. All subunits of mitochondrial respiratory complexes assessed were significantly lower in NSE-apoE4 neurons compared with NSE-apoE3 neurons. However, no significant differences in levels of mitochondrial complexes were detected between astrocytes expressing different apoE isoforms driven by the glial fibrillary acidic protein promoter, leading to our conclusion that the effect of apoE4 is neuron specific. In neuroblastoma Neuro-2A (N2A) cells, apoE4 expression reduced the levels of mitochondrial respiratory complexes I, IV, and V. Complex IV enzymatic activity was also decreased, lowering mitochondrial respiratory capacity. Mutant apoE4 (apoE4-Thr-61) lacking domain interaction did not induce mitochondrial dysfunction in N2A cells, indicating that the effect is specific to apoE4-expressing cells and dependent on domain interaction. Consistent with this finding, treatment of apoE4-expressing N2A cells with a small molecule that disrupts apoE4 domain interaction restored mitochondrial respiratory complex IV levels. These results suggest that pharmacological intervention with small molecules that disrupt apoE4 domain interaction is a potential therapeutic approach for apoE4-carrying AD subjects.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.