-
Eur J Appl Physiol Occup Physiol · Jan 1996
Restoration of fluid balance after exercise-induced dehydration: effects of food and fluid intake.
- R J Maughan, J B Leiper, and S M Shirreffs.
- University Medical School, Foresterhill, Aberdeen, Scotland.
- Eur J Appl Physiol Occup Physiol. 1996 Jan 1; 73 (3-4): 317-25.
AbstractThis study investigated the effects of post-exercise rehydration with fluid alone or with a meal plus fluid. Eight healthy volunteers (five men, three women) were dehydrated by a mean of 2.1 (SEM 0.0)% of body mass by intermittent cycle exercise in a warm [34 (SEM 0) degrees C], humid [55 (SEM 1)% relative humidity] environment. Over 60 min beginning 30 min after exercise, the subjects ingested a commercially-available sports drink (21 mmol.l-1 Na+, 3.4 mmol.l-1 K+, 12 mmol.l-1 Cl-) on trials A and B: on trial C a standard meal [63 kJ.kg-1 body mass (53% CHO, 28% fat, 19% protein; 0.118 mmol.kJ-1 Na+, 0.061 mmol.kJ-1 K+)] plus drink (1 mmol.l-1 Na+, 0.4 mmol.l-1 K+, 1 mmol.l-1 Cl-) were consumed. Water intake (in millilitres) was 150% of the mass loss (in grams). The trials took place after an overnight fast and were separated by 7 days. Blood and urine samples were collected at intervals throughout the study. Blood was analysed for haematocrit, haemoglobin concentration, serum osmolality, Na+, K+ and Cl- concentrations and plasma angiotensin II concentration. Urine volume, osmolality and electrolyte concentrations were measured. Dehydration resulted in a mean 5.2 (SEM 1.3)% reduction in plasma volume. With the exception of serum osmolality, which was higher on trial B than A at the end of the rehydration period, no differences were recorded for any of the measured parameters between trials A and B. Cumulative urine output following rehydration was lower (P < 0.01) on trial C [median 665 (range 396-1190)ml] than on trial B [median 934 (range 550-1403)ml] which was not different (P = 0.44) from trial A [median 954 (range 474-1501)ml]. Less urine was produced over the 1-h period ending 2 h after rehydration on trial C than on B (P = 0.01). On trials A and B the subjects were in net negative fluid balance by 337 (range 779-minus 306) ml and 373 (range 680-minus 173)ml, respectively (P < 0.01): on trial C the subjects were no different from their initial euhydrated state [median minus 29 (range minus 421-137)ml] 6 h after the end of rehydration (P = 1.00). A larger fraction of total water intake was retained when the standard meal plus drink was consumed. This may have been due to the larger quantities of Na+ and K+ ingested with the meal [mean 63 (SEM 4) mmol Na+, 21.3 (SEM 1.3)mmol K+] than with the drink [mean 42(SEM 2)mmol Na+, 6.8 (SEM 0.4)mmol K+]. There was no difference between trials B and C in any of the measured blood parameters, but urinary Na+ and K+ excretion were both higher on trial C and B. These results suggest that post-exercise fluid replacement can be achieved by ingestion of water if consumed in sufficient volume together with a meal providing significant amounts of electrolytes.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.